МАТРИЦЫ И ОТОБРАЖЕНИЯ

Размер: px
Начинать показ со страницы:

Download "МАТРИЦЫ И ОТОБРАЖЕНИЯ"

Транскрипт

1 ЛЕКЦИЯ 7 РАНГ МАТРИЦЫ КРИТЕРИЙ СОВМЕСТНОСТИ МАТРИЦЫ И ОТОБРАЖЕНИЯ 1

2 РАНГ МАТРИЦЫ В векторном пространстве R m столбцов высоты m рассмотрим n векторов A (j) = [a 1j, a 2j,..., a mj ], j = 1, 2,..., n, и их линейную оболочку V = A (1), A (2),..., A (n). Пусть дан еще один вектор B = [b 1, b 2,..., b m ]. Спрашивается, принадлежит ли вектор B линейной оболочке V R m, а если принадлежит, то каким образом его координаты b 1,..., b m выражаются через координаты векторов A (j)? Мы берем линейную комбинацию векторов A (j) с произвольными (неизвестными) коэффициентами x j и составляем уравнение x 1 A (1) + + x n A (n) = B. Наглядный вид этого уравнения: x 1 a 11 a 21. a m1 + x 2 a 12 a 22. a m2 + + x n a 1n a 2n. a mn = b 1 b 2. b m. 2

3 В матричном виде это не что иное как запись системы из m линейных уравнений с n неизвестными: a 11 x 1 + a 12 x a 1n x n = b 1, a 21 x 1 + a 22 x a 2n x n = b 2, a m1 x 1 + a m2 x a mn x n = b m. Именно такой системой мы занимались на первых лекциях. Там же были введены простая и расширенная матрицы a 11 a a 1n a 11 a a 1n b 1 a A = 21 a a 2n и (A B) = a 21 a a 2n b a m1 a m2... a mn a m1 a m2... a mn b m 3

4 Назовем пространством столбцов прямоугольной матрицы A размера m n введенную выше линейную оболочку V = A (1), A (2),..., A (n). Будем пока наше пространство V обозначать через V vert (A) или просто через V vert. Размерность r vert (A) = dim V vert назовем рангом по столбцам матрицы A. Аналогично вводится ранг по строкам матрицы A: где r horiz (A) = dim V horiz, V horiz = A (1), A (2),..., A (m) пространство строк матрицы A, то есть линейная оболочка в R n, натянутая на векторы-строки A (i) = a i1, a i2,..., a in, i = 1, 2,..., m. Таким образом, мы ввели ранги систем векторов-столбцов и векторов-строк соответственно. Мы уже доказывали, что такие ранги определены корректно. 4

5 Будем говорить, что матрица A получена из A элементарным преобразованием типа (I), если переход от одной матрицы к другой осуществляется просто переменой местами двух строк. Будем говорить, что от A к A мы переходим элементарным преобразованием типа (II), если все строки, кроме одной, остаются неизменными, а к одной из строк прибавляется некоторая другая, умноженная на число λ. Заметим, что элементарные преобразования обоих типов обратимы. Лемма 1. Если матрица A получена из прямоугольной матрицы A путем применения конечной последовательности элементарных преобразований над строками, то имеют место равенства: (1) r horiz (A ) = r horiz (A); (2) r vert (A ) = r vert (A). Доказательство. Достаточно рассмотреть тот случай, когда A получена из A путем применения одного элементарного преобразования. (1) Так как A (1),..., A (s),..., A (t),...., A (m) = = A (1),..., A (t),..., A (s),...., A (m), то элементарное преобразование типа (I) не меняет ранг r horiz (A). 5

6 Далее, и, следовательно, A (s) = A (s) + λa (t) = A (s) = A (s) λa (t), A (1),..., A (s) + λa (t),..., A (t),..., A (m) = = A (1),..., A (s),..., A (t),..., A (m), так что r horiz (A) не меняется при элементарных преобразованиях типа (II). (2) Пусть A (j), 1 j n, столбцы матрицы A. Докажем, что λ j A (j) = 0 λ j A (j) = 0. j=1 С этой целью рассмотрим две линейные однородные системы A и A с матрицами A и A соответственно, записанные так: A : x j A (j) = 0, A : x j A (j) = 0. j=1 Матрицы A и A у нас таковы, что A получается из A элементарным преобразованием типа (I) или (II). Мы доказывали, что в таком случае однородные системы эквивалентны, то есть всякое решение (λ 1,..., λ n ) одной системы является решением другой, и наоборот. Это и есть та равносильность, которую мы доказывали. Таким образом, всякой, в том числе и максимальной, независимой системе столбцов одной матрицы будет отвечать независимая система столбцов с теми же номерами другой матрицы, чем и устанавливается необходимое равенство r vert (A) = r vert (A ). j=1 j=1 6

7 Основным результатом этой лекции является следующее утверждение: Теорема 1. Для любой прямоугольной m n-матрицы A справедливо равенство r vert (A) = r horiz (A) (это число называется рангом матрицы и обозначается rank A). Доказательство. Мы уже доказывали, что конечным числом элементарных преобразований типа (I) и (II), совершенных над строками A (i), матрицу A можно привести к ступенчатому виду a a 1k... a 1l... a 1s... a 1n 0... a 2k... a 2l... a 2s... a 2n a 3l... a 3s... a 3n A = a rs... a rn с a 11 a 2k a 3l... a rs 0. Согласно предыдущей лемме r vert (A) = r vert (A), r horiz (A) = r horiz (A), так что нам достаточно доказать только равенство r vert (A) = r horiz (A). 7

8 Столбцы матриц A и A с номерами 1, k, l,..., s, отвечающими главным неизвестным x 1, x k, x l,..., x s нашей линейной системы, будем называть базисными столбцами. Эта терминология вполне оправдана. Преположив наличие соотношения λ 1 A (1) + λ r A (k) + λ l A (l) + + λ s A (s) = 0, связывающего векторы-столбцы A (1) = [a 11, 0,..., 0], A (k) = [a 1k, a 2k, 0,..., 0], нашей матрицы, получим..., A (s) = [a 1s, a 2s,..., a rs, 0,..., 0] λ s a rs = 0,..., λ l a 3l = 0, λ k a 2k = 0, λ 1 a 11 = 0, а так как a 11 a 2k a 3l... a rs 0, то λ 1 = λ k = λ l = = λ s = 0. Значит, rank {A (1), A (k), A (l),..., A (s) } = r и r vert (A) r. Но пространство V vert, порожденное столбцами матрицы A, отождествляется с пространством столбцов матрицы, которая получается из A удалением последних m r нулевых строк. Поэтому r vert (A) = dim V vert R r = r. Сопоставление двух неравенств показывает, что r vert (A) = r. 8

9 С другой стороны, все ненулевые строки матрицы A линейно независимы: любое гипотетическое соотношение λ 1 A (1) + λ 2 A (2) + + λ r A (r) = 0, λ i R, как и в случае со столбцами, дает последовательно λ 1 a 11 = 0, λ 2 a 2k = 0,..., λ r a rs = 0, откуда Следовательно, λ 1 = λ 2 = = λ r = 0. r horiz (A) = r = r vert (A). 9

10 КРИТЕРИЙ СОВМЕСТНОСТИ Ступенчатый вид матрицы A, дающий ответ на ряд вопросов относительно линейных систем, содержит элементы произвола: выбор базисных столбцов, выбор главных неизвестных и т.п. В то же время из предыдущей теоремы сразу можно получить Следствие 1. Число главных неизвестных линейной системы не зависит от способа приведения ее к ступенчатому виду и равно rank A, где A матрица системы. Доказательство. Действительно, в процессе доказательств предыдущих утверждений мы видели, что число главных неизвестных равно числу ненулевых строк матрицы A, совпадающему с рангом матрицы A. Ранг определялся нами совершенно инвариантым образом, то есть не зависел никак от способа приведения к ступенчатому виду. 10

11 Теперь сформулируем и докажем важную теорему. Теорема 2 (Кронекер Капелли). Система линейных уравнений совместна тогда и только тогда, когда ранг ее матрицы совпадает с рангом расширенной матрицы. Доказательство. Совместность линейной системы можно трактовать (как уже говорилось в начале лекции) как вопрос о представлении вектора-столбца B свободных членов в виде линейной комбинации векторов-столбцов A (j) матрицы A. Если такое представление возможно (то есть система совместна), то B A (1),..., A (n) и откуда rank {A (1),..., A (n) } = rank {A (1),..., A (n), B}, rank A = r vert (A) = r vert (A B) = rank (A B). Обратно, если ранги матриц A и A B совпадают и {A (j 1),..., A (j r) } какая-то максимальная линейно независимая подсистема столбцов матрицы A, то расширенная система {A (j 1),..., A (j r), B} будет линейно зависимой, а это означает, что B линейная комбинация базисных столбцов A (j). Значит, система совместна. 11

12 МАТРИЦЫ И ОТОБРАЖЕНИЯ Пусть R n и R m векторные пространства столбцов высоты n и m соответственно. Пусть, далее, A = (a ij ) матрица размера m n. Определим отображение полагая для любого что ϕ A : R n R m, X = [x 1, x 2,..., x n ] R n, ϕ A (X) = x 1 A (1) + x 2 A (2) + + x n A (n), где A (1), A (2),..., A (n) столбцы матрицы A. Так как они имеют высоту m, то в правой части стоит вектор-столбец Y = [y 1, y 2,..., y m ] R m. Более подробно это выражение переписывается в виде y i = a ij x j, i = 1, 2,..., m. j=1 12

13 то Если ϕ A (X + X ) = Аналогично, X = X + X = [x 1 + x 1, x 2 + x 2,..., x n + x n], ϕ A (λx) = (x i + x i )A (i) = i=1 λx i A (i) = λ i=1 x ia (i) + i=1 i=1 x i A (i) = = ϕ A (X ) + ϕ A (X ). A (i) = λϕ A (X), λ R. i=1 Таким образом, для введенного отображения ϕ A всегда выполняются два свойства: (1) ϕ(x + X ) = ϕ(x ) + ϕ(x ) для всех X, X R n ; (2) ϕ(λx)λϕ(x) для всех X R n, λ R. Определение 1. Отображение ϕ : R n R m, обладающее свойствами (1) и (2), называется линейным отображением из R n в R m. 13

14 Как мы знаем, R n = E (1),..., E (n) линейная оболочка стандартных базисных столбцов, так что X = [x 1, x 2,..., x n ] = x j E (j). Из свойств линейности имеем ϕ(x) = ϕ x j E (j) = j=1 j=1 x j ϕ(e (j) ). Это соотношение показывает, что отображение ϕ полностью определяется своими значениями на базисных векторах-столбцах. Положив j=1 ϕ(e (j) ) = [a 1j, a 2j,..., a ml ] = A (j) R m, видим, что задание ϕ равносильно заданию прямоугольной матрицы A = (a ij ) размера m n со столбцами A (1),..., A (n). Значит, можно положить ϕ = ϕ A. Будем называть такую соответствующую отображению матрицу матрицей линейного отображения ϕ A. 14

15 Пусть ϕ A и ϕ A два линейных отображения R n R m с матрицами A = (a ij ) и A = (a ij ). Тогда равенство ϕ A = ϕ A равносильно совпадению значений В частности, ϕ A (X) = ϕ A (X) для всех X R n. A (j) = ϕ A (E (j) ) = ϕ A (E (j) ) = A (j), 1 j n, откуда a ij = a ij и A = A. Резюмируем полученные результаты: Теорема 3. Между линейными отображениями R n в R m и матрица размера m n существует взаимно однозначное соответствие. Обратим внимание на специальный случай m = 1, когда линейное отображение R n R, обычно называемое линейной функцией от n переменных, задается n скалярами a 1, a 2,..., a n : ϕ(x) = ϕ(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n. 15

16 Линейные функции и произвольные линейные отображения R n в R m при фиксированных n и m можно складывать и умножать на скаляры. В самом деле, пусть ϕ A, ϕ B : R n R m два линейных отображения. Отображение ϕ = αϕ A + βϕ B : R n R m, α, β R, определяется своими значениями ϕ(x) = αϕ A (X) + βϕ B (X). В правой части стоит обычная линейная комбинация векторовстолбцов. Так как и ϕ(x + X ) = αϕ A (X + X ) + βϕ B (X + X ) = = α(ϕ A (X ) + ϕ A (X )) + β(ϕ B (X ) + ϕ B (X )) = = (αϕ A (X )+βϕ B (X ))+(αϕ A (X )+βϕ B (X )) = ϕ(x )+ϕ(x ) ϕ(λx) = αϕ A (λx) + βϕ B (λx) = αλϕ A (X) + βλϕ B (X) = = λ(αϕ A (X) + βϕ B (X)) = λϕ(x), то ϕ линейное отображение. Значит, можно говорить о его матрице C: ϕ = ϕ C. 16

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно.

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно. ЛЕКЦИЯ 5 МЕТОД ГАУССА Мы разобрали выше два различных способа задания линейных подпространств F n 2 при помощи образующих и как множество решений системы линейных уравнений Для различных приложений нам

Подробнее

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы.

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. Основные результаты Лекции 4. 1) Любое подпространство V k F n 2 размерности k задается некоторой системой из n k

Подробнее

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса Лекция 6 Методы решения СЛАУ: матричный и Гаусса Аннотация: Доказывается теорема о базисном миноре Кратко излагается суть метода Гаусса Приводятся пример решения системы этим методом Доказывается теорема

Подробнее

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0 ЛЕКЦИЯ 6. Метод ГАУССА и ДВОЙСТВЕННЫЙ БАЗИС. В этой лекции мы опишем алгоритм решения систем линейных уравнений, позволяющий найти и двойственный базис для любого базиса пространства F n 2. В Лекциях 7

Подробнее

ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА

ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА ЛЕКЦИЯ 6 ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА РАНГ СИСТЕМЫ ВЕКТОРОВ 1 ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИНЕЙНАЯ ЗАВИСИМОСТЬ

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

Аналитическая геометрия. Лекция 1.3

Аналитическая геометрия. Лекция 1.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

Лекция 12: Ранг матрицы

Лекция 12: Ранг матрицы Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции изучается важная числовая характеристика матрицы

Подробнее

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем Г л а в а 2 ВЕКТОРНЫЕ ПРОСТРАНСТВА 9 Векторное пространство над полем 91 Аксиоматика Пусть задано поле P, элементы которого будем называть скалярами и некоторое множество V, элементы которого будем называть

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ЛЕКЦИЯ 9 ОБРАТНЫЕ МАТРИЦЫ КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ПРОСТРАНСТВО РЕШЕНИЙ 1 ОБРАТНЫЕ МАТРИЦЫ Для данной матрицы A M n (R) можно попробовать найти такую матрицу A M n

Подробнее

Теория систем линейных уравнений

Теория систем линейных уравнений Глава Теория систем линейных уравнений Ранг матрицы Пусть A F m n Рассмотрим столбцы a,,a n матрицы A = (a,,a n ) как векторы пространства F m, а строки ã,,ã m как векторы пространства F n Базу (соответственно

Подробнее

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51 Системы линейных уравнений Системы линейных уравнений. Методы решения систем линейных уравнений Линейная алгебра (лекция 5) 06.10.2012 2 / 51 Система m линейных уравнений с n неизвестными имеет вид: Линейная

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ,

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

23. Базис векторного пространства

23. Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение базиса Определение Базисом векторного пространства называется упорядоченная

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса.

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Ранг матрицы. Рассмотрим прямоугольную матрицу имеющую m строк и столбцов: A. m m m Выделим в этой матрице произвольные строк и столбцов. Элементы

Подробнее

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ 1 ЭКВИВАЛЕНТНОСТЬ ЛИНЕЙНЫХ СИСТЕМ Пусть нам дана еще одна линейная система того же размера a 11x 1 + a 12x 2 + + a 1nx n = b 1, a 21x 1

Подробнее

Ax = y. A(x 1 x 2 ) = 0, x 1 x 2 Ker(A).

Ax = y. A(x 1 x 2 ) = 0, x 1 x 2 Ker(A). ГЛАВА 10. ЛИНЕЙНЫЕ УРАВНЕНИЯ 1 1. ОБЩЕЕ РЕШЕНИЕ ЛИНЕЙНОГО УРАВНЕНИЯ Одна из основных задач линейной алгебры задача решения линейного уравнения Ax = y. Здесь A : X n Y m есть линейный оператор, y заданный

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Ранг матрицы Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр. и доп. e-mail:

Подробнее

Тема : Общая теория систем линейных уравнений

Тема : Общая теория систем линейных уравнений Тема : Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n.

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n. Лекция IV IV Линейная зависимость векторов Линейной комбинацией векторов a, a 2,, a n называется сумма произведений этих векторов на произвольные числа: α a +α 2 a 2 ++α n a n Линейная комбинация называется

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

Лекция V. V.1. Системы линейных уравнений. x

Лекция V. V.1. Системы линейных уравнений. x Лекция V V Системы линейных уравнений a x +a ++a n b a x +a ++a n b a m x +a m ++a mn b m () Запишем систему m линейных уравнений с n неизвестными в несколько необычном виде: a a a m x + a a a m ++ a n

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

Тема 2-5: Ранг матрицы

Тема 2-5: Ранг матрицы Тема 2-5: Ранг матрицы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр) В

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

Тема 2-4: Подпространства

Тема 2-4: Подпространства Тема 2-4: Подпространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами По условию теоремы L [ ] B ( m Тогда в силу линейности оператора L имеем: m m m L L ] B [ Системы линейных дифференциальных уравнений с постоянными коэффициентами Собственные значения и собственные векторы

Подробнее

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( )

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( ) МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Пусть дана система () m линейных уравнений с неизвестными Для ее решения нужно выполнить следующие действия: Составить расширенную матрицу (7) системы: m

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Тема 2-3: Базис и размерность линейного пространства

Тема 2-3: Базис и размерность линейного пространства Тема 2-3: Базис и размерность линейного пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида...

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида... Системы линейных алгебраических уравнений Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида a a a, a a a,, a a a Ее можно представить в виде матричного уравнения

Подробнее

1 Билинейная и квадратичная формы.

1 Билинейная и квадратичная формы. 1 Билинейная и квадратичная формы. Пусть ϕ(x, y) числовая функция, заданная на линейном пространстве, то есть ϕ : L L R. Если ϕ(x, y) линейна по каждому из своих аргументов, то её называют билинейной формой.

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Основные определения Рассмотрим следующую систему m уравнений относительно n неизвестных в поле K: a x + a 2 + + a nx n b, a 2 x + a 2 2 + + a2 nx

Подробнее

2. Решение произвольных систем линейных алгебраических уравнений

2. Решение произвольных систем линейных алгебраических уравнений Решение произвольных систем линейных алгебраических уравнений Выше рассматривались в основном квадратные системы линейных уравнений число неизвестных в которых совпадает с числом уравнений В настоящем

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст (самостоятельное изучение) Аннотация Понятие линейной зависимости строк или столбцов матрицы. Ранг матрицы, теорема о ранге

Подробнее

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов ВВ Введение Представляю Вашему вниманию лекционный курс основ линейной алгебры, который впервые был прочитан в 2004 году на бизнес факультете НГТУ для специальности

Подробнее

Метод Гаусса (метод исключения неизвестных)

Метод Гаусса (метод исключения неизвестных) Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно перейти с помощью элементарных преобразований

Подробнее

ПЕРВОЕ ЗАДАНИЕ. 1. Ранг матрицы 1. Указать какой нибудь базисный минор и определить ранг матрицы. Указать базисные строки и базисные столбцы.

ПЕРВОЕ ЗАДАНИЕ. 1. Ранг матрицы 1. Указать какой нибудь базисный минор и определить ранг матрицы. Указать базисные строки и базисные столбцы. ПЕРВОЕ ЗАДАНИЕ Ранг матрицы Указать какой нибудь базисный минор и определить ранг матрицы Указать базисные строки и базисные столбцы 0 0 а) ; б) 0 0 ; в) 0 0 ; г) 0 0 0 ; 0 0 0 д) 0 0 ; е) 3 3 ; ж) 0 0

Подробнее

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева МАТЕМАТИКА Методические рекомендации и задания контрольной работы для студентов, обучающихся по заочной форме по направлениям «Менеджмент», «Экономика» Составитель: старший преподаватель Н А Кривошеева

Подробнее

1. Системы линейных алгебраических уравнений. Основные понятия. Метод Гаусса

1. Системы линейных алгебраических уравнений. Основные понятия. Метод Гаусса Системы линейных алгебраических уравнений Основные понятия Метод Гаусса Основные понятия Равносильные системы Определение Система линейных алгебраических уравнений (или система линейных уравнений) имеет

Подробнее

U+V. Для любых u U и v V существуют a 1,..., a k, b 1,..., b m F 2 такие, что

U+V. Для любых u U и v V существуют a 1,..., a k, b 1,..., b m F 2 такие, что ЛЕКЦИЯ 2. Операции с подпространствами, число базисов число базисов и число подпространств размерности k. Основные результаты Лекции 2. 1) U V, U + V, dim(u + V ). 2) Подсчет числа плоскостей в F 4 2.

Подробнее

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40 Линейная алгебра Матрицы и определители Ранг матрицы Линейная алгебра (лекция 4) 2 / 40 Выберем в матрице A размера m n произвольные k строк и k столбцов, k min(m, n). Линейная алгебра (лекция 4) 3 / 40

Подробнее

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений ЗАНЯТИЕ Метод Крамера и матричный метод решения систем линейных уравнений Сведения из теории Уравнение называется линейным, если оно содержит неизвестные только в первой степени и не содержит произведений

Подробнее

Тема 2-1: Линейные пространства

Тема 2-1: Линейные пространства Тема 2-1: Линейные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Глава ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Системы линейных уравнений и их решение методом Гаусса Система, состоящая из m линейных уравнений с n неизвестными или, как будем дальше говорить,

Подробнее

всевозможные решения заданной системы линейных однородных уравнений:

всевозможные решения заданной системы линейных однородных уравнений: . ЯДРО ЛИНЕЙНОГО ПРЕОБРАЗОВАНИЯ Ранее мы охарактеризовали подпространство конечномерного пространства как линейную оболочку. Но возможны и другие истолкования подпространства. Пусть, e, e2, K, en какой-либо

Подробнее

Построение базисов в ядре и образе линейного оператора.

Построение базисов в ядре и образе линейного оператора. Построение базисов в ядре и образе линейного оператора 1 Речь пойдёт о построении базисов в ядре и образе линейного оператора Будут рассмотрены два примера: первый пример с пояснениями; второй как образец

Подробнее

Тема 2-8: Образ и ядро линейного отображения

Тема 2-8: Образ и ядро линейного отображения Тема 2-8: Образ и ядро линейного отображения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Конспект лекции 4 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ План лекции Лекция Системы линейных уравнений Матричная запись Основная и расширенная матрицы системы; 2 Совместные и не совместные системы 2 Однородные системы

Подробнее

13. Билинейные и квадратичные функции

13. Билинейные и квадратичные функции 95 Билинейные и квадратичные функции Билинейная функция Определение Билинейной функцией (билинейной формой) на линейном пространстве L называется функция от двух векторов из L линейная по каждому из своих

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА 66 ГЛАВА 6 ЛИНЕЙНЫЕ ПРОСТРАНСТВА Определение линейного пространства В гл 5 n-мерное векторное пространство было определено как упорядоченная система n чисел Для n-мерных векторов были введены операции

Подробнее

Базис. Координаты вектора в базисе

Базис. Координаты вектора в базисе Тема 0 Базис Существование и единственность разложения вектора по базису Координатное представление векторов Действия с векторами в координатном представлении Необходимое и достаточное условие линейной

Подробнее

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E, 31 Обратная матрица Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы 1 Критерий существования и свойства обратной матрицы Определение Пусть A квадратная

Подробнее

Тема: Линейное пространство R n

Тема: Линейное пространство R n Тема: Линейное пространство R n А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Тема 2-20: Аффинные пространства

Тема 2-20: Аффинные пространства Тема 2-20: Аффинные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2

Подробнее

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК ББК Составитель: Н.А. Пинкина КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Линейная алгебра. Решение типовых примеров. Варианты контрольных

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ УНИВЕРСИТЕТСКИЙ УЧЕБНИК ВЫСШАЯ МАТЕМАТИКА И ЕЕ ПРИЛОЖЕНИЯ К ХИМИИ А. А. МИХАЛЕВ, И. Х. САБИТОВ ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Допущено Учебно-методическим объединением по классическому университетскому

Подробнее

Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij, i=1,..., m, j=1,..., n:

Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij, i=1,..., m, j=1,..., n: Билет 1 Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij, i=1,..., m, j=1,..., n: расположенных в m строках и n столбцах. Матрица называется квадратной, если m=n (n - порядок

Подробнее

«Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке, ) является линейным оператором.

«Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке, ) является линейным оператором. «Линейные отображения и операторы» 1. Убедиться, что отображение пространства R на себя, сопоставляющее строке ( x 1, x2, x, x ) строку ( x1 2x2 x x, x1 x2 x, x1 2x2 x 2x,, x x 2x ) является линейным оператором.

Подробнее

28. Фундаментальная система решений однородной системы линейных уравнений

28. Фундаментальная система решений однородной системы линейных уравнений 28. Фундаментальная система решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Размерность

Подробнее

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейная алгебра Лекция 3 ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейное (векторное) пространство Определение Множество элементов произвольной природы X называется линейным (или векторным) пространством если для любых

Подробнее

Тема 2: Матрицы и действия над ними

Тема 2: Матрицы и действия над ними Тема 2: Матрицы и действия над ними А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Лекция 5 РТУ-МИРЭА. Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ГОРШУНОВА Т.А.

Лекция 5 РТУ-МИРЭА. Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ГОРШУНОВА Т.А. Лекция Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Однородная система линейных алгебраических уравнений Пусть дана однородная система линейных уравнений: или в матричной форме: m m n n A

Подробнее

Практикум по линейной алгебре

Практикум по линейной алгебре Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского В.К. Вильданов Практикум по линейной алгебре Учебно-методическое пособие Нижний Новгород Издательство

Подробнее

Лекция 16: Образ и ядро линейного оператора

Лекция 16: Образ и ядро линейного оператора Лекция 16: Образ и ядро линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Тема 1-5: Системы линейных уравнений

Тема 1-5: Системы линейных уравнений Тема 1-5: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Кафедра высшей математики (ВМ) Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ Практическое

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

ЛЕКЦИЯ 21 ГРУППОВЫЕ АЛГЕБРЫ РАСШИРЕНИЯ ГАЛУА

ЛЕКЦИЯ 21 ГРУППОВЫЕ АЛГЕБРЫ РАСШИРЕНИЯ ГАЛУА ЛЕКЦИЯ 21 ГРУППОВЫЕ АЛГЕБРЫ РАСШИРЕНИЯ ГАЛУА 1 ГРУППОВЫЕ АЛГЕБРЫ Пусть K поле, G группа. Рассмотрим множество K[G] всевозможных формальных сумм α, α K. По определению α = β α = β G. Введем операции над

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль Матричная алгебра Векторная алгебра Текст (самостоятельное изучение) Аннотация Однородные СЛАУ их совместность Критерий существования ненулевого решения однородной СЛАУ его

Подробнее

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством Пусть дана квадратная матрица второго порядка ( ) a11 a A = 12 a 21 a 22 (1) Определитель второго порядка, соответствующий матрице (1), определяется равенством a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ξ η K некоторое решение системы (1), то суммы K любое решение однородной системы (2), V n над числовым полем Р рассмотрим

ξ η K некоторое решение системы (1), то суммы K любое решение однородной системы (2), V n над числовым полем Р рассмотрим . ЛИНЕЙНОЕ МНОГООБРАЗИЕ (ГИПЕРПЛОСКОСТЬ) Определение: Назовем подмножество векторов пространства линейным многообразием (или гиперплоскостью), полученным путем сдвига подпространства L на вектор х, если

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 5 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ Ранг матрицы Рассмотрим матрицу A K m следующего общего вида: a a a A a 2 a 2 2 a 2 A = = A A 2,A 2,,A =, a m a2 m a m A m где a a a 2 A =,,A a 2

Подробнее

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a Лекция 5 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение.

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение. Т е м а : «Л и н е й н а я з а в и с и м о с т ь с и с т е м ы в е к т о р о в» ( т и п о в ы е п р и м е р ы с р е ш е н и я м и ) Пример. Путем приведения элементарными преобразованиями исходной матрицы

Подробнее

С.Н. Зиненко. Линейная алгебра. Матрицы и определители. (теория к задачам)

С.Н. Зиненко. Линейная алгебра. Матрицы и определители. (теория к задачам) С.Н. Зиненко Линейная алгебра Матрицы и определители (теория к задачам) 215 1. ЛИНЕЙНОЕ ПРОСТРАНСТВО, ПОДПРОСТРАНСТВО. БАЗИС И РАЗМЕРНОСТЬ 1º Линейным пространством называется множество элементов a, b,

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 2010 УДК 511+512 ББК 22 Ч45 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн.

Подробнее

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны.

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны. Лекция 3 Тема: Уравнение прямой на проективной плоскости Принцип двойственности Теорема Дезарга Проективные отображения и проективные преобразования План лекции 1 Уравнение прямой на проективной плоскости

Подробнее