уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим

Размер: px
Начинать показ со страницы:

Download "уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим"

Транскрипт

1 Уравнения плоскости. Общее уравнение плоскости. Неполные уравнения плоскости. Уравнение плоскости в отрезках Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей. Уравнение плоскости, проходящей через три различные точки, не лежащие на одной прямой. Нормированное уравнение плоскости. 11 Лекция Уравнения плоскости Общее уравнение плоскости. Справедливы следующие утверждения 1. Если в пространстве задана произвольная плоскость π и фиксирована произвольная декартова прямоугольная система Oxyz, то плоскость π определяется в этой системе уравнением первой степени. 2. Если в пространстве фиксирована произвольная декартова прямоугольная система Oxyz, то всякое уравнение первой степени с тремя переменными x, y и z определяет относительно этой системы плоскость. Для доказательства первого утверждения достаточно установить, что плоскость π определяется уравнением первой степени при каком - то одном специальном выборе декартовой прямоугольной системы, т.к. тогда она определяется уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим перпендикулярно этой плоскости. Тогда уравнением плоскости π будет уравнение первой степени z = 0 т.к. этому уравнению будут удовлетворять координаты любой точки, лежащей на плоскости π, и не будут удовлетворять координаты ни одной точки, не лежащей на плоскости π. Утверждение доказано. Для доказательства второго фиксируем произвольную декартову прямоугольную систему Oxyz и рассмотрим произвольное уравнение первой степени Ax + By +Cz + D = 0, (11.1) в котором A, B,C и D - какие угодно постоянные, причем из постоянных A, B и C хотя бы одна отлична от нуля. Уравнение (11.1) заведомо имеет хотя бы одно решение x0, y0, z0, т. е. существует хотя бы одна точка M0 (x0, y0, z0 ), координаты которой удовлетворяют уравнению (11.1): Ax0 + By0 +Cz0 + D = 0, (11.2) Вычитая из уравнения (11.1) тождество (11.2), получим уравнение A(x x0 ) + B(y y0 ) +C(z z0 ) = 0, (11.3) эквивалентное уравнению (11.1). Достаточно доказать, что уравнение (11.3) определяет относительно системы Oxyz некоторую плоскость.

2 78 Лекция 11 Докажем, что уравнение (11.3) определяет плоскость π, проходящую через точку M 0 (x 0,y 0,z 0 ) и перпендикулярную вектору n = (A,B,C) (так как хотя бы одна из постоянных A,B и C не равна нулю, то вектор n ненулевой). В самом деле, если точка M(x,y,z) лежит на указанной плоскости π, то ее координаты удовлетворяют уравнению (11.3), в этом случае векторы n = (A,B,C) и M 0 M = (x x 0,y y 0,z z 0 ) ортогональны и их скалярное произведение A(x x 0 ) + B(y y 0 ) +C(z z 0 ), (11.4) равно нулю. Если же точка M(x,y,z) не лежит на указанной плоскости π, то ее координаты не удовлетворяют уравнению (11.3), т.к. в этом случае векторы n и M 0 M не ортогональны и поэтому их скалярное произведение (11.4) не равно нулю. Утверждение доказано. Определение 11.1 Уравнение Ax + By +Cz + D = 0 (11.5) с произвольными коэффициентами A,B,C и D такими, что из коэффициентов A,B и C хотя бы. один отличен от нуля, называется общим уравнением плоскости. Определение 11.2 Плоскость, определяемая общим уравнением, ортогональна к вектору n = (A, B,C). Этот вектор называется нормальным вектором плоскости Неполные уравнения плоскости. Определение 11.3 Общее уравнение плоскости Ax+By+Cz+D = 0 называется полным, если все его коэффициенты A,B,C и D отличны от нуля. Если хотя бы один из указанных коэффициентов равен нулю, то уравнение называется неполным. Рассмотрим все возможные виды неполных уравнений: 1). D = 0, уравнение Ax + By + Cz = 0 определяет плоскость, проходящую через начало координат (поскольку координаты начала удовлетворяют этому уравнению). 2). A = 0, уравнение By+Cz+D = 0 определяет плоскость, параллельную оси Ox (поскольку нормальный вектор этой плоскости n = (0, B,C) перпендикулярен оси Ox). 3). B = 0, уравнение Ax +Cz+D = 0 определяет плоскость, параллельную оси Oy (этой оси перпендикулярен нормальный вектор n = (A, 0,C)). 4). C = 0, уравнение Ax+By+D = 0 определяет плоскость, параллельную оси Oz (этой оси перпендикулярен нормальный вектор n = (A, B, 0)). 5). A = 0,B = 0, уравнение Cz + D = 0 определяет плоскость, параллельную координатной плоскости Oxy (эта плоскость параллельна осям Ox и Oy). 6). A = 0,C = 0, уравнение By + D = 0 определяет плоскость, параллельную координатной плоскости Oxz (эта плоскость параллельна осям Ox и Oz). 7). B = 0,C = 0, уравнение Ax + D = 0 определяет плоскость, параллельную координатной плоскости Oyz (эта плоскость параллельна осям Oy и Oz). 8). A = 0,B = 0,D = 0, уравнение Cz = 0 определяет координатную плоскость Oxy (плоскость параллельна Oxy и проходит через начало координат).

3 11.1 Уравнения плоскости. 79 9). A = 0,C = 0,D = 0, уравнение By = 0 определяет координатную плоскость Oxz (плоскость параллельна Oxz и проходит через начало координат). 10). B = 0,C = 0,D = 0, уравнение Ax = 0 определяет координатную плоскость Oyz (плоскость параллельна Oyz и проходит через начало координат) Уравнение плоскости в отрезках. Рассмотрим теперь полное уравнение плоскости Ax + By +Cz + D = 0. Так как все коэффициенты A,B,C и D отличны от нуля, мы можем переписать это уравнение в виде x D/A + y D/B + z = 1, (11.6) D/C а затем положить a = D/A,b = D/B,c = D/C. В результате получим уравнение x a + y b + z = 1, (11.7) c называемое уравнением плоскости в отрезках. Заметим, что в уравнении плоскости в отрезках числа a, b, c имеют простой геометрический смысл (см. рис. 11.1): они равны величинам отрезков, которые Рис. 11.1: Уравнение плоскости в отрезках. отсекает плоскость на осях Ox, Oy и Oz соответственно (отрезки отсчитываются от начала координат) Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей. Пусть две плоскости π 1 и π 2 заданы общими уравнениями A 1 x+b 1 y+c 1 z+d 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0. Очевидно, вопрос об определении угла между плоскостями сводится к определению угла ϕ между их нормальными векторами n 1 = (A 1,B 1,C 1 ) и n 2 = (A 2,B 2,C 2 ). Из определения скалярного произведения n 1 n 2 = n 1 n 2 cosϕ и из выражения в координатах длин векторов n 1 и n 2 и их скалярного произведения, получим A 1 A 2 + B 1 B 2 +C 1 C 2 cosϕ = (11.8) A B2 1 +C2 1 A B2 2 +C2 2 Итак, угол ϕ между плоскостями π 1 и π 2 определяется с помощью формулы (11.8).

4 80 Лекция 11 Условие параллельности плоскостей π 1 и π 2, эквивалентное условию коллинеарности векторов n 1 и n 2, заключается в пропорциональности координат этих векторов, т. е. имеет вид A 1 = B 1 = C 1. (11.9) A 2 B 2 C 2 Условие перпендикулярности плоскостей π 1 и π 2 может быть получено из формулы (11.8) (при cos ϕ = 0) или выражено равенством нулю скалярного произведения векторов n 1 и n 2 : A 1 A 2 + B 1 B 2 +C 1 C 2 = 0. (11.10) Уравнение плоскости, проходящей через три различные точки, не лежащие на одной прямой. Рассмотрим следующую задачу: вывести уравнение плоскости, проходящей через три различные точки M 1 (x 1,y 1,z 1 ), M 2 (x 2,y 2,z 2 ), M 3 (x 3,y 3,z 3 ), не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы M 1 M 2 = (x 2 x 1,y 2 y 1,z 2 z 1 ) и M 1 M 3 = (x 3 x 1,y 3 y 1,z 3 z 1 ) не коллинеарны, а поэтому точка M(x,y,z) лежит в одной плоскости с точками M 1,M 2 и M 3 тогда и только тогда, когда векторы M 1 M 2, M 1 M 3 и M 1 M = (x x 1,y y 1,z z 1 ) компланарны, т.е. тогда и только тогда, когда смешанное произведение этих трех векторов равно нулю. Используя выражение смешанного произведения, получим необходимое и достаточное условие принадлежности M(x, y, z) к указанной плоскости в виде x x 1 y y 1 z z 1 x 2 x 1 y 2 y 1 z 2 z 1 x 3 x 1 y 3 y 1 z 3 z 1 = 0 (11.11) Уравнение первой степени (11.11) и является уравнением искомой плоскости Нормированное уравнение плоскости. Рассмотрим плоскость π. Проведем через начало координат O прямую L, перпендикулярную плоскости π, и обозначим буквой P точку пересечения прямой L и плоскости π, так как показано на рисунке Рис. 11.2: Нормированное уравнение плоскости. На прямой L возьмем единичный вектор n, направление которого совпадает с направлением отрезка OP (в случае совпадения точек O к P направление n

5 11.1 Уравнения плоскости. 81 выберем произвольно). Выразим уравнение плоскости π через следующие параметры: 1. длину p отрезка OP, 2. углы α,β и γ наклона вектора n к осям Ox, Oy и Oz соответственно. Так как n - единичный вектор, то его координаты, соответственно равные проекциям на оси координат, имеют вид n = (cosα,cosβ,cosγ). (11.12) Очевидно, что точка M(x, y, z) лежит на рассматриваемой плоскости π тогда и только тогда, когда проекция вектора OM на ось, определяемую вектором n, равна p, т. е. при условии пр nom = p (11.13) Так как n - единичный вектор, то в силу определения скалярного произведения пр nom = n OM (11.14) Имея в виду, что OM = (x,y,z), а вектор n определяется равенством (11.12), получим следующее выражение для скалярного произведения этих векторов: n OM = xcosα + ycosβ + zcosγ (11.15) Из сопоставления полученных соотношений вытекает, что точка M(x,y,z) лежит на плоскости π тогда и только тогда, когда координаты этой точки удовлетворяют уравнению xcosα + ycosβ + zcosγ p = 0 (11.16) Уравнение (11.16) и есть уравнение плоскости π, выраженное через параметры p, α, β и γ. Это уравнение называется нормированным уравнением плоскости. Введем теперь понятие отклонения произвольной точки M от данной плоскости π. Пусть число d обозначает расстояние от точки M до плоскости π. Определение 11.4 Отклонением δ точки M от плоскости π называется число +d в случае, когда точка M и начало координат O лежат по разные стороны от плоскости π, и число d в случае, когда M и O лежат по одну сторону от π. Если же начало координат O лежит на плоскости π, положим отклонение равным +d в случае, когда M лежит по ту сторону от π, куда направлен вектор n, и равным d в противном случае. Теорема 11.1 Левая часть нормированного уравнения плоскости x cos α + ycosβ + zcosγ p = 0 равна отклонению точки M с координатами x,y,z от плоскости π, определяемой уравнением xcosα + ycosβ + zcosγ p = 0. Доказательство. Спроектируем точку M на ось, определяемую вектором n. Пусть Q - проекция точки M. Отклонение δ точки M от плоскости π равно PQ, где PQ обозначает величину направленного отрезка PQ оси, определяемой вектором n. Далее, очевидно, что δ = PQ = OQ OP = OQ p (11.17) Но OQ = пр n OM, а последняя проекция равна xcosα + ycosβ + zcosγ. Итак, OQ = xcosα + ycosβ + zcosγ (11.18)

6 82 Лекция 11 или δ = xcosα + ycosβ + zcosγ p. (11.19) Эта теорема приводит к следующему правилу: Следствие 11.1 Для нахождения отклонения δ точки M 0 (x 0,y 0,z 0 ) от плоскости π следует в левую часть нормированного уравнения плоскости π подставить на место x,y и z координаты x 0,y 0 и z 0 точки M 0. Это правило позволяет находить и расстояние от точки M до плоскости π, т.к. расстояние равно модулю отклонения. Рассмотрим теперь алгоритм приведения общего уравнения плоскости к нормированному виду. Так как общее уравнение Ax + By +Cz + D = 0 и уравнение xcosα + ycosβ + zcosγ p = 0 должны определять одну и ту же плоскость, то найдется число t такое, что ta = cosα, tb = cosβ, tc = cosγ, td = p. (11.20) Возводя в квадрат первые три равенства (11.20), складывая их и учитывая, что сумма квадратов направляющих косинусов равна единице 1 t = ± A 2 + B 2 +C. (11.21) 2 Так как по смыслу расстояние p всегда неотрицательно, то из последнего равенства заключаем, что знак t противоположен знаку D.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору.

Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Положение плоскости в пространстве можно задать точкой M 0 (x 0, y 0, z 0 ), принадлежащей этой плоскости и вектором

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль 2 Аналитическая геометрия на плоскости и в пространстве Лекция 6 Аннотация Уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору Общее уравнение

Подробнее

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. 1 1. Уравнение поверхности и уравнения линии в пространстве. Геометрический смысл уравнений В аналитической геометрии всякую поверхность рассматривают как совокупность

Подробнее

R может быть задана с помощью

R может быть задана с помощью 5... Уравнения плоскости. Плоскость в пространстве 5.. ПЛОСКОСТЬ. R может быть задана с помощью n, B, C, вектора перпендикулярного плоскости, и точки M,, этой плоскости. Вектор n, B, C,, лежащей на E перпендикулярный

Подробнее

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве.

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве. Аналитическая геометрия в пространстве Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию Прямоугольная система координат Охy в пространстве

Подробнее

4. Координаты вектора

4. Координаты вектора 4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

ЛЕКЦИЯ N14. Плоскость. 1.Нормальный вектор плоскости. Уравнение плоскости, проходящей через точку.

ЛЕКЦИЯ N14. Плоскость. 1.Нормальный вектор плоскости. Уравнение плоскости, проходящей через точку. ЛЕКЦИЯ N4. Плоскость и прямая в пространстве. Плоскость.....Нормальный вектор плоскости. Уравнение плоскости, проходящей через точку.....общее уравнение плоскости.... 4.Угол между плоскостями. Условия

Подробнее

8. Дать определение ортогональной скалярной проекции вектора на направление.

8. Дать определение ортогональной скалярной проекции вектора на направление. 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения

Подробнее

Лекция 1.3. Уравнения плоскости и прямой

Лекция 1.3. Уравнения плоскости и прямой Лекция.. Уравнения плоскости и прямой Аннотация: Помимо векторного, общего, нормального и в отрезках дается еще и параметрическое уравнение плоскости, с целью обобщения в дальнейшем понятия плоскости в

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аннотация Декартова прямоугольная система координат на плоскости и в пространстве. Координаты точки. Связь

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2)

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2) Занятие 9 Прямая на плоскости и плоскость в пространстве На этом занятии мы будем заниматься кривыми и поверхностями, которые задаются простейшими уравнениями алгебраическими уравнениями первой степени.

Подробнее

Аналитическая геометрия Прямые и плоскости. Линейная алгебра (лекция 10) / 30

Аналитическая геометрия Прямые и плоскости. Линейная алгебра (лекция 10) / 30 Аналитическая геометрия Прямые и плоскости Линейная алгебра (лекция 10) 17.11.2012 2 / 30 Линейная алгебра (лекция 10) 17.11.2012 3 / 30 Расстояние между двумя точками M 1 (x 1, y 1 ) и M 2 (x 2, y 2 )

Подробнее

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения»

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Государственное образовательное учреждение Среднего профессионального образования «Котовский индустриальный техникум» МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Котовск, 4 г. Учебное

Подробнее

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет,

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению плоскости. Излагаемый в ней материал

Подробнее

РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: В.П.Белкин

РЕШЕНИЕ ЗАДАЧ по теме АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Составитель: В.П.Белкин РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: ВПБелкин Занятие Прямая на плоскости Пример Определить коэффициенты k, b в уравнении прямой y = kx+ b, если прямая определена уравнением x y=

Подробнее

( ) ( ) ( ) x x + y y + z z = R

( ) ( ) ( ) x x + y y + z z = R Глава II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Лекции 0-2 2. УРАВНЕНИЯ ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ 2.. Основные понятия Поверхность и ее уравнение Поверхность в пространстве можно рассматривать

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 05 setgray0 05 setgray1 1 Консультация 7 ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ ЗАДАЧА 1 Представить прямую x x 0 a = y y 0 b = z z 0 c как линию пересечения плоскостей, параллельных осям Ox и Oy Система координат

Подробнее

5. Система координат. Координаты точки

5. Система координат. Координаты точки 5. Система координат. Координаты точки 1. Понятие системы координат Определение. Системой координат в пространстве (на плоскости) называется совокупность базиса пространства (соответственно базиса плоскости)

Подробнее

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аннотация Скалярные и векторные величины. Понятие геометрического вектора, как направленного отрезка. Длина вектора. Нуль-вектор,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Уравнения прямой в пространстве. Лекция 7

Уравнения прямой в пространстве. Лекция 7 Уравнения прямой в пространстве Лекция 7 1 Параметрические уравнения прямой Перейдём в векторном уравнении прямой в пространстве к координатной форме r ( x; y; z), r ( x ; y ; z ), a ( m; n; p) r r t a

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 5 СИСТЕМЫ КООРДИНАТ 1. Проекция вектора на ось Дадим определение. Определение 4. Осью называется прямая, на которой указано направление. Рис. 1. Ось. Пусть A и B это

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

Геометрические векторы

Геометрические векторы Геометрические векторы Определение Вектором называется направленный отрезок начальной точкой А и конечной точкой В (который можно перемещать параллельно самому себе) Если начало вектора - точка А, а его

Подробнее

Лекция 5 СИСТЕМЫ КООРДИНАТ. 1. Декартовы системы координат

Лекция 5 СИСТЕМЫ КООРДИНАТ. 1. Декартовы системы координат Лекция 5 СИСТЕМЫ КООРДИНАТ 1. Декартовы системы координат Определение 1. Прямоугольной декартовой системой координат в пространстве называется упорядоченная четвёрка {O,e 1,e 2,e 3 }, в которой O это некоторая

Подробнее

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Модуль 3 для класса. Учебно-методическая часть./

Подробнее

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1 1 Простейшие задачи аналитической геометрии на плоскости 11 Расстояние между двумя точками Рассмотрим прямоугольную систему координат (декартовую, рис Рис 1 Любой точки M соответствуют координаты OA x

Подробнее

Прямые и плоскости. Глава Уравнения линий и поверхностей

Прямые и плоскости. Глава Уравнения линий и поверхностей Глава 8 Прямые и плоскости 8.1. Уравнения линий и поверхностей 8.1.1. Линии на плоскости Предположим, что на плоскости задана аффинная система координат. Пусть l кривая на плоскости и f(x, y) некоторая

Подробнее

Лекция 6. Прямая на плоскости

Лекция 6. Прямая на плоскости Лекция 6 Прямая на плоскости Уравнение прямой, проходящей через заданную точку и имеющей заданный вектор нормали l O b y На плоскости, где введена прямоугольная система координат, рассмотрим прямую l.

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 5 (самостоятельное изучение) Аннотация Декартова прямоугольная система координат на плоскости и в пространстве Формулы для расстояния

Подробнее

Аналитическая геометрия. Лекция 1.4

Аналитическая геометрия. Лекция 1.4 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости Тема 5 Способы задания прямой на плоскости Условие совпадения прямых задаваемых разными линейными уравнениями Геометрические свойства линейных неравенств Способы задания плоскости в пространстве Способы

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

Плоскость. Прямая в пространстве 1

Плоскость. Прямая в пространстве 1 Объект изучения геометрические элементы: точки, прямые, линии, плоскости, поверхности; Метод изучения метод координат; Основные задачи 1. Задано ГМТ, т.е. совокупность точек, обладающих характерным свойством.

Подробнее

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1 Лекция - Тема: Метод координат в пространстве Преобразование координат План лекции АСК в пространстве Расстояние между точками и деление отрезка в данном отношении (в пространстве) ПДСК в пространстве

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 8 ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ 1. Различные уравнения прямой в пространстве Уравнение прямой в векторной параметрической форме было получено нами в предыдущей лекции:

Подробнее

Лекция 31 Глава 3. Аналитическая геометрия в пространстве

Лекция 31 Глава 3. Аналитическая геометрия в пространстве Лекция Глава Аналитическая геометрия в пространстве Плоскость в пространстве Уравнение плоскости проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка ) и ненулевой

Подробнее

Аналитическая геометрия в пространстве. Содержание. 1 Общие сведения 1

Аналитическая геометрия в пространстве. Содержание. 1 Общие сведения 1 Аналитическая геометрия в пространстве Содержание 1 Общие сведения 1 2 Плоскость в пространстве 2 2.1 Уравнение в отрезках................ 3 2.2 Нормальное уравнение плоскости......... 4 2.3 Расстояние

Подробнее

Элементы аналитической геометрии в курсе геометрии классов

Элементы аналитической геометрии в курсе геометрии классов Элементы аналитической геометрии в курсе геометрии 1-11 классов 1. Введение. Уравнение прямой. Уравнение плоскости 4. задач с использованием уравнений прямой и плоскости 5. Расстояние и отклонение точки

Подробнее

Лекция 6: Система координат. Координаты точки

Лекция 6: Система координат. Координаты точки Лекция 6: Система координат. Координаты точки Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.

ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство. ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.... 1 2.Векторная алгебра.... 2 3.Системы координат... 6 1.Векторное пространство. Рассмотрим

Подробнее

Конспект лекции 1 СИСТЕМЫ КООРДИНАТ

Конспект лекции 1 СИСТЕМЫ КООРДИНАТ Конспект лекции 1 СИСТЕМЫ КООРДИНАТ 0. План лекции 1. Аксиомы геометрии и роль систем координат. 2. Декартова система координат на прямой. 2.1. Ось, направленный отрезок, величина направленного отрезка

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я прямая на плоскости

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я прямая на плоскости А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я прямая на плоскости ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов

Подробнее

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ

Подробнее

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число Лекция 4 Скалярное произведение φ Определение. Углом φ между ненулевыми векторами и называется тот из углов, образованных этими векторами, отложенными от единого начала, который лежит в пределах от до

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая

Подробнее

3. Прямая на плоскости

3. Прямая на плоскости 3 Прямая на плоскости В 3 представлены типов задач на прямую на плоскости, использующие все основные уравнения прямой, а также формулы расстояния между двумя точками, расстояния от точки до прямой, угла

Подробнее

РТУ-МИРЭА ГОРШУНОВА Т.А. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии.

РТУ-МИРЭА ГОРШУНОВА Т.А. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии. y М(x, y) 0 x Определение. Уравнением линии (кривой) на плоскости Оху называется уравнение, которому

Подробнее

) - с координатами O M в O x

) - с координатами O M в O x Преобразования на плоскости Преобразования в пространстве 3 Выражение направляющих косинусов в матричной форме Преобразования на плоскости Пусть на плоскости координат Oxy и O. P заданы две правые декартовы

Подробнее

1. Линейные уравнения с двумя переменными В первом задании мы рассмотрели линейные уравнения с одной переменной.

1. Линейные уравнения с двумя переменными В первом задании мы рассмотрели линейные уравнения с одной переменной. 1. Линейные уравнения с двумя переменными В первом задании мы рассмотрели линейные уравнения с одной переменной. Например, уравнения 2x+ 5= 0, 3x+ ( 8x 1) + 9= 0 являются линейными уравнениями с переменной

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2 Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2 Аннотация Уравнения прямой в пространстве: общие, канонические, параметрические уравнения прямой и уравнения

Подробнее

Конспект лекции 12 НОРМАЛЬНЫЕ УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ

Конспект лекции 12 НОРМАЛЬНЫЕ УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ Конспект лекции 12 НОРМАЛЬНЫЕ УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ 0. План лекции 1. Взаимный базис. 1.1. Определение; 1.2. Линейная независимость; 1.3. Формулы скалярного произведения; 1.4. Формулы векторного

Подробнее

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия»

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия» ТИПОВОЙ РАСЧЕТ «Векторная алгебра Аналитическая геометрия» Задание 1: а) показать, что векторы p, q, r образуют базис Найти координаты вектора x в этом базисе; б) проверить коллинеарность векторов и c

Подробнее

Векторная алгебра Направленные отрезки и векторы.

Векторная алгебра Направленные отрезки и векторы. ГЛАВА 1. Векторная алгебра. 1.1. Направленные отрезки и векторы. Рассмотрим евклидово пространство. Пусть прямые (AB) и (CD) параллельны. Тогда лучи [AB) и [CD) называются одинаково направленными (соответственно

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль 2 Аналитическая геометрия на плоскости и в пространстве Текст 6 (самостоятельное изучение) Аннотация Уравнения прямой в пространстве: как линии пересечения двух плоскостей,

Подробнее

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

Глава 8. Прямые и плоскости. 8.1 Прямая на плоскости Аффинные задачи

Глава 8. Прямые и плоскости. 8.1 Прямая на плоскости Аффинные задачи Глава 8 Прямые и плоскости 8.1 Прямая на плоскости 8.1.1 Аффинные задачи В этом разделе система координат аффинная. 1. Указать хотя бы один направляющий вектор прямой, заданной уравнением: 1) y = kx+b;

Подробнее

Глава 2. Уравнения прямой на плоскости

Глава 2. Уравнения прямой на плоскости Глава. Уравнения прямой на плоскости. Уравнения прямой на плоскости Напомним, что прямая на плоскости Oxy может быть задана следующими уравнениями (см. рис. ): общим: Ax+ By+ C = () Здесь = ( A, B) нормальный

Подробнее

Векторная алгебра. Глава Векторы на плоскости и в пространстве

Векторная алгебра. Глава Векторы на плоскости и в пространстве Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 3 ПОТОК. Лектор П. В. Голубцов

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 3 ПОТОК. Лектор П. В. Голубцов АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 3 ПОТОК Лектор П. В. Голубцов 1.1. Векторы. Список вопросов к первой части экзамена 1. Сформулируйте определение линейных операций над векторами. Перечислите свойства линейных операций

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

5. Векторы. 5.1 Определение и начальные сведения о векторах

5. Векторы. 5.1 Определение и начальные сведения о векторах 49 5 Векторы 51 Определение и начальные сведения о векторах Любые две точки А,В определяют направленный отрезок, если точка А определяет начало, точка В конец отрезка, направление задается от А к В Направленный

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ

Подробнее

Лекция 6. Геометрические векторы.

Лекция 6. Геометрические векторы. Лектор Гущина Елена Николаевна, кафедра Высшей математики 2. Лекция 6. Геометрические векторы. Вектор как направленный отрезок. Сложение векторов и умножение вектора на число. Свойства линейных операций.

Подробнее

Прямая линия и плоскость в пространстве. Линейная алгебра (лекция 11) / 37

Прямая линия и плоскость в пространстве. Линейная алгебра (лекция 11) / 37 Прямая линия и плоскость в пространстве Линейная алгебра (лекция 11) 24.11.2012 2 / 37 Прямая линия и плоскость в пространстве Расстояние между двумя точками M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 )

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ЛЕКЦИЯ 3 УСКОРЕНИЯ ТОЧЕК ПРИ ПЛОСКОМ ДВИЖЕНИИ. КИНЕМАТИЧЕСКИЕ ИНВАРИАНТЫ. СЛОЖНОЕ ДВИЖЕНИЕ. КИНЕМАТИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА

ЛЕКЦИЯ 3 УСКОРЕНИЯ ТОЧЕК ПРИ ПЛОСКОМ ДВИЖЕНИИ. КИНЕМАТИЧЕСКИЕ ИНВАРИАНТЫ. СЛОЖНОЕ ДВИЖЕНИЕ. КИНЕМАТИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА ЛЕКЦИЯ 3 УСКОРЕНИЯ ТОЧЕК ПРИ ПЛОСКОМ ДВИЖЕНИИ. КИНЕМАТИЧЕСКИЕ ИНВАРИАНТЫ. СЛОЖНОЕ ДВИЖЕНИЕ. КИНЕМАТИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА 1. Ускорения точек при плоском движении На прошлой лекции были освещены почти

Подробнее

Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА

Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА 0. План лекции 1. Скалярное произведение. 1.1. Определение скалярного произведения. 1.2. Эквивалентная запись через проекции. 1.3. Доказательство линейности по

Подробнее

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами. Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор

Подробнее

ординат, - базисные векторы, - абсцисса точки M ( - проекция точки M на ось Ох параллельно оси Оy), -

ординат, - базисные векторы, - абсцисса точки M ( - проекция точки M на ось Ох параллельно оси Оy), - Тема 7.2. Прямоугольные координаты на плоскости и в пространстве. Формулы вычисления длины вектора, расстояние между двумя точками. Системы координат на плоскости Декартовы прямоугольные координаты (рис.

Подробнее

Аналитическая геометрия. Задачи для самостоятельного решения.

Аналитическая геометрия. Задачи для самостоятельного решения. Аналитическая геометрия Задачи для самостоятельного решения 1 Векторы 11 Даны вершины треугольника: A( 1; 2; 4), B ( 4; 2;0) и C(3; 2; 1) Найти угол между медианой AM и стороной AB 12 Выяснить при каком

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

Глава 7 ОСНОВНЫЕ ПОНЯТИЯ СТЕРЕОМЕТРИИ

Глава 7 ОСНОВНЫЕ ПОНЯТИЯ СТЕРЕОМЕТРИИ Глава 7 ОСНОВНЫЕ ПОНЯТИЯ СТЕРЕОМЕТРИИ 7.1. ПАРАЛЛЕЛЬНОСТЬ В СТЕРЕОМЕТРИИ 7.1.1. Аксиомы стереометрии (наличие четырех точек не на плоскости, принадлежность прямой B к плоскости, плоскость через три точки

Подробнее

Лекция Дифференцирование сложной функции

Лекция Дифференцирование сложной функции Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

Подробнее

Линейная алгебра Лекция 9. Прямая линия на плоскости

Линейная алгебра Лекция 9. Прямая линия на плоскости Линейная алгебра Лекция 9 Прямая линия на плоскости Пусть дана декартовая прямоугольная система координат Oxy на плоскости Геометрическое место точек (ГМТ) Определение Уравнением линии на плоскости Оху

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

Раздел 6. ПРЯМАЯ НА ПЛОСКОСТИ. Лекция 12. Тема: Прямая на плоскости. 6.1 Системы координат на плоскости (простейшие задачи)

Раздел 6. ПРЯМАЯ НА ПЛОСКОСТИ. Лекция 12. Тема: Прямая на плоскости. 6.1 Системы координат на плоскости (простейшие задачи) Раздел 6 ПРЯМАЯ НА ПЛОСКОСТИ Лекция Тема: Прямая на плоскости 6 Системы координат на плоскости (простейшие задачи) Прямая, которая служит для изображения действительных чисел, на которой выбраны начальная

Подробнее

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое пособие МОСКВА Кафедра математики ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое

Подробнее

Экзаменационный билет 1.

Экзаменационный билет 1. Экзаменационный билет 1. 1. Векторы в пространстве. Основные определения и операции над векторами: сумма векторов, произведение вектора на число. Свойства. Теорема о коллинеарных векторах. 2. Расстояние

Подробнее

Курс лекций подготовлен доц. Мусиной М.В. Аналитическая геометрия на плоскости.

Курс лекций подготовлен доц. Мусиной М.В. Аналитическая геометрия на плоскости. Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости понимают способ,

Подробнее

Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов:

Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов: 1 2 Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов: изучение материала по учебникам, решение задач, самопроверка

Подробнее

Прямая на плоскости. Степень уравнения (1) определяет порядок линии. Будем говорить, что уравнение (1) определяет (задает) линию L.

Прямая на плоскости. Степень уравнения (1) определяет порядок линии. Будем говорить, что уравнение (1) определяет (задает) линию L. Прямая на плоскости Общее уравнение прямой. Прежде чем вводить общее уравнение прямой на плоскости введем общее определение линии. Определение. Уравнение вида F(x,y)=0 (1) называется уравнением линии L

Подробнее

Методические указания к контрольным работам

Методические указания к контрольным работам Методические указания к контрольным работам Контрольная работа «Переаттестация» Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости Расстояние между двумя точками M ( ) и ( ) плоскости

Подробнее

Полученное уравнение и является уравнением прямой, проходящей через заданные точки А и В.

Полученное уравнение и является уравнением прямой, проходящей через заданные точки А и В. Уравнение Пусть даны точки A( x; y ), B( x2; y 2 2 Середина отрезка: x x ; y y 2 2. Это концы средней линии трапеции, треугольника, точка пересечения диагоналей (если они делятся пополам). Длина отрезка:

Подробнее

Уравнение прямой на плоскости.

Уравнение прямой на плоскости. Уравнение прямой на плоскости. Каноническое уравнение прямой. Пусть прямая параллельна вектору {, } и проходит через точку (, ) тогда уравнение этой прямой может быть записано в виде,. () Уравнение ()

Подробнее

Семинар 1 РЕШЕНИЕ ЗАДАЧ К ЭКЗАМЕНУ ПО КУРСУ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» 1. Кривые второго порядка

Семинар 1 РЕШЕНИЕ ЗАДАЧ К ЭКЗАМЕНУ ПО КУРСУ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» 1. Кривые второго порядка Семинар 1 РЕШЕНИЕ ЗАДАЧ К ЭКЗАМЕНУ ПО КУРСУ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» 1 Кривые второго порядка Задача 1 Докажите, что произведение расстояний от фокусов эллипса до любой касательной к нему есть величина

Подробнее