2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

Размер: px
Начинать показ со страницы:

Download "2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D."

Транскрипт

1 Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (, ), содержащий замкнутый = + +, D G Предположим, что выполнены следующие условия: (У) Пусть f (, ) непрерывна в области D и, следовательно, равномерно ограничена Тогда прямоугольник D [ a, a] [ b, b] существует постоянная M = ma f (, ), те (, ) D f M в D (У) Пусть f (, ) удовлетворяет в D условию Липшица по переменной, те f (, ) f(, ) N, где N - постоянная Липшица, не зависящая от и f(, ) Замечание Последнее условие будет выполнено, в частности, если C( D) Очевидно, что если интегральная кривая, проходящая через точку (, ) то она не покинет прямоугольник D до точки = + H, где H min a, b = M, существует, (см рис ) D + b (, ) b + M + a b + a Рис

2 Действительно, уравнения «крайних» интегральных кривых, удовлетворяющих задаче Коши d M d =±, =, имеют вид =± M( ) Подставив уравнения b горизонтальных границ области D = ± b в эти уравнения, получим = + M Теорема (существования и единственности решения задачи Коши для скалярного ОДУ) Пусть выполнены условия (У) и (У) Тогда на отрезке H + H существует единственное решение задачи () Следующее утверждение существенно используется при доказательстве сформулированной теоремы Лемма Пусть функция f (, ) непрерывна по совокупности переменных в некотором прямоугольнике D [ a, a] [ b, b] = + + Тогда задача Коши () эквивалентна интегральному уравнению = + f ξ, ( ξ), () которое рассматривается в классе непрерывных функций Доказательство Пусть решение (), целиком лежащее в D Тогда, подставляя его в () и интегрируя полученное тождество в пределах от a, + a, получим, что удовлетворяет уравнению () С другой стороны, если непрерывная функция является решением (), то f (, ) также непрерывна, а (, ) до [ ] f ξ ξ d ξ является непрерывно дифференцируемой функцией переменной Следовательно, решение дифференциального уравнения d f ( ) d =,, удовлетворяющее начальным условиям = Доказательство теоремы существования решения задачи Коши Для доказательства теоремы применим метод последовательных приближений (метод Пикара) Определим итерационный процесс метода последовательных приближений так: = f,, (3) n n ( n ) =, n =,,, где - произвольная непрерывная функция, график которой целиком лежит в области D На каждой итерации задача (3) разрешима, и ее решение при [, H] n + представимо в виде n = + f ξ, ( ξ) () Далее, в силу условия f (, ) M, D имеем n M Поэтому интегральная кривая n ( ) не покинет угол между диагоналями прямоугольника b b, + b, + b M M [ ], и, следовательно, f ( n ) C[ H, H], + Отсюда, в

3 частности, вытекает, что b В результате получим функциональную некоторую последовательность { n } Исследуем ее свойства Лемма Функциональная последовательность { n } сходится равномерно на множестве [, + H] Доказательство Рассмотрим функциональный ряд S = + ( ) + + ( n n ) +, частичная сумма Sn( ) которого совпадает с n( ): Sn n Для членов этого ряда справедливы следующие оценки: ( ξ ( ξ) ) ( ξ ( ξ) ) ξ N ( ξ) ( ξ) bn( ) f, f, d ( ) 3 bn ( ξ ) = bn f ξ, ξ f ξ, ξ N ( ξ ) ( ξ) ( ) NH b!! Методом математической индукции можно доказать (проделайте это самостоятельно), что ( ) f ξ, ξ f ξ, ξ N ( ξ ) ( ξ) n n n n n bn n ( ξ ) ( n! ) = bn ( ) ( n ) n n n n n NH b (5)! ( n! ) Таким образом, члены рассматриваемого функционального ряда мажорируются по абсолютной величине членами сходящегося (например, по признаку Даламбера) числового ряда n ( NH ) NH, сумма которого равна e Следовательно, ряд Sn n= ( n! ) равномерно на множестве [, H] последовательность { n } также сходится равномерно на множестве [, H] Лемма 3 Функциональная последовательность { } сходится абсолютно и + (признак Вейерштрасса), а значит функциональная + n сходится к непрерывному решению интегрального уравнения (), записанного выше Доказательство Поскольку все функции n( ) непрерывны, а функциональная последовательность { ( n ) }, то C [, + H] ( ) n Кроме того, равномерная сходимость последовательности непрерывных функций { } n является достаточным условием для перехода к пределу под знаком интеграла в выражении () В результате получим = + (, ) f ξ ( ξ), те предел последовательных приближений { } n удовлетворяет интегральному уравнению (), эквивалентному задаче Коши () Итак, существование решения задачи Коши для скалярного уравнения доказано

4 3 Единственность решения задачи Коши Единственность решения задачи Коши вытекает из следующего утверждения Лемма Интегральное уравнение () имеет единственное решение C( [, H] ) + Доказательство Предположим, что имеется два различных решения уравнения () ( ) и Тогда их разность u = удовлетворяет интегральному уравнению ( ξ ξ ) ( ξ ξ ) ξ (6) u = f, f, d Покажем, что интегральное уравнение (6) имеет только тривиальное решение Доказательство этого факта можно провести с помощью следующей леммы Лемма (Гронуолла) Пусть существует постоянная L > такая, что для всех [ ab] ( ξ ), выполнено неравенство z z + L z, (7) L( a) Тогда при z > справедлива оценка z ze (8) В случае z = имеет место z Доказательство ) Пусть (7) имеем z > Положим Y z + L z( ξ) >, [ a, b], Y( a) z z Y a a =, тогда в силу Так как Y( ) дифференцируемая функция, то выполнено Y = Lz LY, откуда в силу Y >, вытекает Y Y( a) = z L Далее интегрируя, имеем ln Y ln Y( a) ln Y ln z L( a) Y =, (8) L( a) L( a) откуда после потенцирования получаем Y ze z Y ze, [ ab, ] ) Пусть z = Если (7) выполнено для z =, то тем более (7) верно при всех z >, те справедлива оценка (8) Переходя к пределу при z в (8), получим z, откуда следует, что z Лемма Гронуолла доказана Продолжим доказательство леммы Рассмотрим (6), откуда получаем оценку усл Липшица (9) u f ξ, ( ξ) f ξ, ( ξ) N u( ξ) Полагая z = u и пользясь леммой Гронуолла для случае z =, имеем л Гронуолла ξ ξ z N z d, [, + H] Лемма доказана z = Из леммы, как было указано в начале параграфа, вытекает единственность решения задачи Коши Доказательство теоремы существования и единственности задачи () завершено Замечание Доказательство леммы можно провести и другим способом, не используя лемму Гронуолла Для этого из (9) получим следующее неравенство

5 u N ( ) ma uξ () ) Если N H < ( H см формулировку леммы ), то из () получим неравенство [, ] ma u N H ma u, [, + H] [, + H] () которое, очевидно, выполняется лишь при u при [, + H] ) Если N H, то рассмотрим (6) на отрезке [, + h], где N h< Применяя (), получим, что u на отрезке [, + h], а при [ + h, + H] функция u удовлетворяет уравнению u = f ξ, ( ξ) f ξ, ( ξ) + h Далее, проведя аналогичные рассуждения, за конечное число шагов [ N ] что u при [, + H] = + + докажем, Замечание Условие Липшица может быть заменено более удобным требованием f наличия непрерывной в D (и потому ограниченной) производной Тогда существует постоянная N = ma f такая, что f (, ) f(, ) N, те выполнено условие D Липшица Замечание 3 Теорема носит локальный характер Мы доказали ее в области D + = { + H, b} Аналогично можно доказать ее в области D = { H, b} Теорема существования и единственности решения задачи Коши в случае, когда правая часть уравнения непрерывна и удовлетворяет условию Липшица в полосе Примером утверждения, имеющего нелокальный характер, те в котором устанавливается существование решения на всем промежутке гладкости по, является следующая теорема Теорема Пусть функция f (, ) непрерывна и удовлетворяет условию Липшица по + Тогда задача () имеет единственное решение на отрезке [, + a] Доказательство этой важнейшей в нашем курсе теоремы лишь незначительно отличается от приведенного выше доказательства Теоремы При организации итерационного процесса (3) в качестве начального приближения можно взять любую непрерывную на отрезке переменой в полосе {[, a], R} [, + a] функцию ( ) Так как определяемая формулой (3) функция непрерывна на отрезке [, + a] (как и все последующие приближения i, i =,3, ), то на всем отрезке [, + a] выполнено неравенство d Это приводит к незначительному изменению в оценке (5): постоянную b нужно заменить на d, а постоянную H на a Детали этого доказательства читателю предлагается уточнить самостоятельно 5 Дополнения, примеры, упражнения

6 Дополнение Можно доказать разрешимость задачи Коши лишь при выполнении условия (У), те предполагая лишь непрерывность функции f (, ) в области D (теорема Пеано) Однако, в этом случае решение не обязательно единственно Пример (нарушение единственности решения задачи Коши) Рассмотрим уравнение d d = Правая часть f (, ) = определена и непрерывна при всех (, ) Покажем, что условие Липшица не выполняется в прямоугольниках, содержащих точки оси Действительно, если условие Липшица выполняется, то при справедливо неравенство: f(, ) f(, ) = L, тогда как при = и f(, ) f(,) = Проверьте самостоятельно, что существуют два решения задачи Коши, удовлетворяющие начальному условию () = :, = и, Дополнение (о продолжении решения) Решение задачи Коши () может быть продолжено, например, вправо за точку = + H, если условия теоремы существования и единственности выполняются в прямоугольнике D = { a, ( ) b} В этом случае решение () существует и единственно на отрезке [, + H], где постоянная H находится из тех же соображений, что и H в Теореме Заметим, что продолжение решения возможно не всегда даже в случае, если f (, ) бесконечно дифференцируемая функция Пример Рассмотрим задачу Коши d = d () = Найдем ее точное решение d d = => d d = => d d = => = + C => = + C общее решение дифференциального уравнения Используя начальное условие () =, получим C = Поэтому = = решение задачи Коши Оценим промежуток существования решения задачи Коши в соответствии с Теоремой, те найдем параметр H, фигурирующий в этой теореме Пусть решение задачи Коши на, H отклонилось от своего начального значения на величину Тогда отрезке [ ] H =, M ( ) H M Найдем максимальное значение H ( + ) ( + ) ( + )( + ) H ( ) = = = = = + => = ( + ) => =, H H() = =

7 Таким образом, Теорема гарантирует разрешимость задачи лишь на отрезке, Заметим, что из вида точного решения задачи Коши вытекает возможность его продолжения вправо лишь на промежутке < Попробуем продолжить его на больший промежуток, последовательно используя Теорему Рассмотрим следующий процесс =, = ( ) = =, H =, M = + => H( ) = 3 M H ( ) = => 3 =, 3 3 = =,, Далее =, = = =, H =, M = => H( ) = 9 M H ( ) = => =, = =,, Итак, мы построили продолжение решения на больший интервал Заметим, что на - том шаге описанного процесса H =, = +,, и H = = + = = 3 = = = Дополнение 3 Метод последовательных приближений Пикара активно используется при численном решении задачи Коши После n итераций получается приближенное решение n( ), тем более точное, чем больше n Пример 3 Рассмотрим снова задачу Коши d = d () = Ее точное решение было получено выше (см пример ), и имеет вид = = Получим решение рассматриваемой задачи, применяя метод последовательных приближений Пикара Определим итерационный процесс так: dn = n d () n =, n =,,3, В качестве нулевого приближения возьмем = На каждой итерации задача разрешима при [, H ] и ее решение имеет вид: Проделаем несколько первых итераций: = + = +, n ( ξ ) n = + ( ξ) ξ ( ξ) ξ 3 = + d = + + d = ,

8 3 3 ( ξ) ξ = + d = Продолжая этот итерационный процесс, мы все точнее будем приближаться к функции n = =, < n= Упражнение Найдите точное решение задачи Коши d 3 d =, () = Методом последовательных приближений Пикара найдите ( ) и Далее с помощью Теоремы оцените промежуток существования решения и попробуйте построить продолжение решения на больший интервал Дополнение Рассмотрим задачу Коши () d = f (, ) d, ( ) = в случае, когда функция f (, ) в окрестности точки (, ) раскладывается в степенной ряд j f (, ) = f j j Такая функция f (, ) называется аналитической Справедливо следующее утверждение Теорема 3 Если функция f (, ) аналитическая в окрестности точки (, ), то в некоторой окрестности этой точки существует единственное аналитическое решение задачи Коши () вида = + c = Этот ряд определяет решение задачи Коши лишь при тех значениях переменной, при которых он сходится Разложив f (, ) в окрестности точки (, ) в степенной ряд j j, подставив в обе части ряд для f (, ) = f j и приравняв коэффициенты при одинаковых степенях, получим линейную систему уравнений для определения коэффициентов c В силу Теоремы 3 эта система имеет единственное решение Аналогичная теорема имеет место и для задачи Коши для ОДУ n-го порядка, разрешенного относительно старшей производной: ( n) ( n ) = f,,,,, n =, =,, = n ( n ) в случае, когда правая часть f,,,, является аналитической функцией в окрестности точки,,,, n Пример Рассмотрим еще раз задачу Коши d = d, () =

9 точным решением которой является функция = (см пример ) Построим ее решение, используя Теорему 3 Обозначив z =, для функции z получим задачу Коши: dz = z+ = + z+ z d z() = В окрестности точки (,) выполнены все условия Теоремы 3, что позволяет искать решение в виде степенного ряда z = c = Подставив данный ряд в обе части уравнения, получим c = + c + c = = = Выпишем несколько первых слагаемых сумм справа и слева: 3 3 c+ c+ 3c3 + = + c+ c + c3 + + c + cc + Приравнивая коэффициенты при одинаковых степенях, найдем c =, c =, c3 =,, c =, 3 Таким образом, z = = =, <, следовательно, = = z = =

5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1)

5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1) Лекция 5 5 Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ Постановка задачи Задача Коши для нормальной системы ОДУ x = f (, x), () состоит в отыскании решения x =

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Локальная теорема Коши Пикара.

Локальная теорема Коши Пикара. Локальная теорема Коши Пикара. Теорема (о существовании и единственности локального решения). Пусть дана задача Коши x = f(t, x) x(t 0 ) = x 0, (1) где правая часть f(t, x) определена и непрерывна в прямоугольнике

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий.

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий. Лекция 4 3 Непрерывная зависимость решения задачи Коши от параметров и начальных условий Постановка задачи Простейшим примером параметра, от которого зависит решение задачи Коши = f ( xy, ), yx ( ) = y

Подробнее

4. Функциональные ряды Основные определения. Пусть задана бесконечная последовательность функций с общей областью определения X

4. Функциональные ряды Основные определения. Пусть задана бесконечная последовательность функций с общей областью определения X 4 Функциональные ряды 4 Основные определения Пусть задана бесконечная последовательность функций с общей областью определения X u ), u ( ), K, u ( ),K ( ОПРЕДЕЛЕНИЕ Выражение u ) + u ( ) + K + u ( ) +

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

1. Метод итераций. ( x ) x = ϕ. (5.1) Метод отыскания приближенных значений корня уравнения (5.1) с помощью формулы xn

1. Метод итераций. ( x ) x = ϕ. (5.1) Метод отыскания приближенных значений корня уравнения (5.1) с помощью формулы xn Метод итераций Пусть дано уравнение с одной неизвестной ( (5 Метод отыскания приближенных значений корня уравнения (5 с помощью формулы ( называют просто методом итерации При решении таких уравнений возникает

Подробнее

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды ЛЕКЦИИ 8 9 Теорема Хилле Иосиды S 3. Определение и элементарные свойства максимальных монотонных операторов Всюду на протяжении этих двух лекций символом H обозначено гильбертово пространство со скалярным

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

ЛЕКЦИЯ 6 Различные обобщения и границы применимости

ЛЕКЦИЯ 6 Различные обобщения и границы применимости ЛЕКЦИЯ 6 Различные обобщения и границы применимости S. Непродолжаемое решение интегрального уравнения Вольтерра. Существование и единственность непродолжаемого решения интегрального уравнения. Рассмотрим

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Федеральное агентство по образованию. Московский Государственный университет геодезии и картографии (МИИГАиК)

Федеральное агентство по образованию. Московский Государственный университет геодезии и картографии (МИИГАиК) Федеральное агентство по образованию Московский Государственный университет геодезии и картографии (МИИГАиК) МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ по курсу ВЫСШАЯ МАТЕМАТИКА Числовые

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

14. Задача Штурма-Лиувилля.

14. Задача Штурма-Лиувилля. Лекция 8 4 Задача Штурма-Лиувилля Рассмотрим начально-краевую задачу для дифференциального уравнения в частных производных второго порядка описывающего малые поперечные колебания струны Струна рассматривается

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина.

Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т А.Б. Васильева, Н.Н. Нефедов Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина. (некоторые разделы

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

ГЛАВА I Абстрактная теорема Пикара

ГЛАВА I Абстрактная теорема Пикара ГЛАВА I Абстрактная теорема Пикара ЛЕКЦИЯ Абстрактные функции S. Абстрактные функции. Непрерывность, предел Пусть B банахово пространство с нормой.. Для простоты будем считать это пространство вещественным.

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

Нелинейные краевые задачи

Нелинейные краевые задачи МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им МВЛомоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т АБ Васильева НН Нефедов Нелинейные краевые задачи (дополнительные разделы к курсу лекций «Дифференциальные уравнения»)

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Тема: Ряды в комплексной плоскости

Тема: Ряды в комплексной плоскости Математический анализ Раздел: Теория функций комплексного переменного Тема: Ряды в комплексной плоскости Лектор Янущик О.В. 217 г. 9. Ряды в комплексной плоскости 1. Числовые ряды Пусть задана последовательность

Подробнее

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности.

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности. Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =,, х =,,,,,,,,

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Глава 3 ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Лекции 3-4 Интегральное уравнение Фредгольма -го рода как пример некорректно поставленной задачи Эта тема по предмету рассмотрения

Подробнее

ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава Глава I Задача Коши для уравнения первого порядка.

ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава Глава I Задача Коши для уравнения первого порядка. ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава. 8 1.Понятие дифференциального уравнения.математические модели, описываемые дифференциальными уравнениями.11 3.Решение

Подробнее

1 Степенные ряды. Радиус сходимости и интервал

1 Степенные ряды. Радиус сходимости и интервал В.В. Жук, А.М. Камачкин 1 Степенные ряды. Радиус сходимости и интервал сходимости. Характер сходимости. Интегрирование и дифференцирование. 1.1 Радиус сходимости и интервал сходимости. Функциональный ряд

Подробнее

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n Тема 9 Степенные ряды Степенным рядом называется функциональный ряд вида при этом числа... коэффициентами ряда, а точка разложения ряда.,,...,,... R... называются центром Степенные ряды Общий член степенного

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Курс лекций. Министерство образования и науки Российской Федерации

Курс лекций. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Подробнее

Лекция 3. Представление функций степенными рядами

Лекция 3. Представление функций степенными рядами С А Лавренченко wwwlawrecekoru Лекция Представление функций степенными рядами Введение Представление функций степенными рядами оказывается полезным при решении следующих задач: - интегрирование функций

Подробнее

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие Министерство общего и профессионального образования Российской Федерации Санкт-Петербургский государственный технический университет Аксёнов АП СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

Лекция 3, 4. Будем считать, что область задания функции f (x) } значений аргумента функции f ( x n ) значений функции сходится к b.

Лекция 3, 4. Будем считать, что область задания функции f (x) } значений аргумента функции f ( x n ) значений функции сходится к b. Лекция 3, 4 Предельное значение функции при, + и Будем считать, что область задания функции f ( имеет хотя бы один элемент, лежащий вне отрезка [ A, A], для любого положительного числа A. Определение (по

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Санкт-Петербургский государственный университет Кафедра математического анализа

Санкт-Петербургский государственный университет Кафедра математического анализа Санкт-Петербургский государственный университет Кафедра математического анализа ФУНКЦИОНАЛЬНЫЕ РЯДЫ Поточечная и равномерная сходимость. Действия над рядами, связанные с предельным переходом методические

Подробнее

О НЕКОТОРЫХ СВОЙСТВАХ ОБОБЩЕННЫХ РЕШЕНИЙ ВОЛНОВОГО УРАВНЕНИЯ ИЗ КЛАССОВ L p И W 1 p ПРИ p 1. В.А.Ильин, А.А.Кулешов

О НЕКОТОРЫХ СВОЙСТВАХ ОБОБЩЕННЫХ РЕШЕНИЙ ВОЛНОВОГО УРАВНЕНИЯ ИЗ КЛАССОВ L p И W 1 p ПРИ p 1. В.А.Ильин, А.А.Кулешов О НЕКОТОРЫХ СВОЙСТВАХ ОБОБЩЕННЫХ РЕШЕНИЙ ВОЛНОВОГО УРАВНЕНИЯ ИЗ КЛАССОВ L p И W 1 p ПРИ p 1. В.А.Ильин, А.А.Кулешов В этой работе мы сначала устанавливаем в явном аналитическом виде существование в прямоугольнике

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

Лекция 15. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

Лекция 15. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ Лекция 5. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ На практике существуют задачи оптимизации, в которых критерий качества зависит от функции, определить которую необходимо

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

Теорема существования и единственности решения дифференциального уравнения

Теорема существования и единственности решения дифференциального уравнения Теорема существования и единственности решения дифференциального уравнения А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В этом параграфе мы докажем теорему, которой пользовались в

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ 1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ 1.1. Основные определения Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, искомую функцию y (

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих Лекция НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА Определение и сходимость несобственных интегралов, зависящих от параметра Признаки равномерной сходимости несобственных интегралов, зависящих от параметра

Подробнее

Теоретичеcкие вопроcы и задачи

Теоретичеcкие вопроcы и задачи Теоретичеcкие вопроcы и задачи Теоретичеcкие вопроcы и задачи Дифференциальное иcчиcление функции неcкольких переменных. Дайте определение раccтояния (, b ) между точками, b, q докажите cвойcтва функции

Подробнее

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА В этой лекции мы введём альтернативы Фредгольма и докажем с их помощью существование классических решений задач Дирихле и Неймана в ограниченных и неограниченных

Подробнее

1.Последовательности комплексных чисел. Предел.

1.Последовательности комплексных чисел. Предел. ЛЕКЦИЯ N33. Функции комплексного переменного. Пределы. Непрерывность. Элементарные функции. Дифференцирование ФКП. Свойства производных. 1.Последовательности комплексных чисел. Предел.... 1.Ограниченные

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина.

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина. 6 Раздел ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ Тема Существование и единственность решения краевой задачи Матричные функции Грина Рассмотрим на отрезке по линейную краевую задачу для системы из обыкновенных дифференциальных

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

ПОНЯТИЕ ПРОИЗВОДНОЙ ФУНКЦИИ

ПОНЯТИЕ ПРОИЗВОДНОЙ ФУНКЦИИ ПОНЯТИЕ ПРОИЗВОДНОЙ ФУНКЦИИ Пусть имеем функцию определенную на множестве X и пусть точка X - внутренняя точка те точка для которой существует окрестность X Возьмем любую точку и обозначим через называется

Подробнее

1.Разложение аналитической функции в степенной ряд.

1.Разложение аналитической функции в степенной ряд. ЛЕКЦИЯ N37. Ряды аналитических функций. Разложение аналитической функции в степенной ряд. Ряд Тейлора. Ряд Лорана..Разложение аналитической функции в степенной ряд.....ряд Тейлора.... 3.Разложение аналитической

Подробнее

Комплексные числовые ряды

Комплексные числовые ряды Тема Комплексные числовые ряды Рассмотрим числовой ряд k ak с комплексными числами вида Ряд называется сходящимся, если сходится последовательность S его частичных сумм S a k k. При этом предел S последовательности

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Методические указания по курсу «Интегральные уравнения»

Методические указания по курсу «Интегральные уравнения» Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский ядерный университет «МИФИ» Волгодонский инженерно-технический институт

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

1. Метод Эйлера. Задача нахождения частного решения y = y( x) дифференциального уравнения

1. Метод Эйлера. Задача нахождения частного решения y = y( x) дифференциального уравнения . Метод Эйлера Задача нахождения частного решения дифференциального уравнения ( ) f (6.) может быть приближенно решена численными методами. Для нахождения частного решения уравнения (6.) на отрезке [ a

Подробнее

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры Лекция 0 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ В этой лекции мы изучим банаховы алгебры и рассмотрим спектральную теорию операторов, действующих в банаховом пространстве, которое в данной лекции всюду

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

4. Существование собственного значения вполне непрерывного самосопряженного оператора.

4. Существование собственного значения вполне непрерывного самосопряженного оператора. Лекция 4 Существование собственного значения вполне непрерывного самосопряженного оператора Пусть линейный оператор действует в линейном пространстве L Число называется собственным значением оператора,

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных

Подробнее

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор.

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор. ТЕМА Элементы теории линейных операторов Обратный оператор Вполне непрерывный оператор Основные определения и теоремы Оператор A, действующий из линейного пространства L в линейное пространство L, называется

Подробнее

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1 В.В. Жук, А.М. Камачкин 5 Функциональные последовательности и ряды. Равномерная сходимость, возможность перестановки предельных переходов, интегрирование и дифференцирование рядов и последовательностей.

Подробнее

ЛЕКЦИЯ 2 Простейший случай теоремы Пикара. S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью

ЛЕКЦИЯ 2 Простейший случай теоремы Пикара. S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью ЛЕКЦИЯ 2 Простейший случай теоремы Пикара S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью Теорема 1. Пусть B банахово пространство с нормой.. Пусть функция

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1 3 2.2.2 Метод сжимаающих отображений Аналогичные рассуждения при определенных условиях справедливы и в общем случае. Приведем условия, при которых существует единственное решение (y(), z()) Y M задачи

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

Дифференциал функции y = f(x) зависит от х и является главной частью приращения х. Также можно воспользоваться формулой:

Дифференциал функции y = f(x) зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: 2.2.7. Применение дифференциала к приближенным вычислениям. Дифференциал функции y = зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: dy d Тогда абсолютная погрешность:

Подробнее

Ряды аналитических функций

Ряды аналитических функций Лекция 6 Ряды аналитических функций 6.1 Функциональные последовательности Пусть D C и f n : D C. Последовательность функций {f n } сходится поточечно (converges pointwise) к функции f : D C если для каждого

Подробнее

Определение 1. Степенным рядом называется функциональный ряд вида

Определение 1. Степенным рядом называется функциональный ряд вида . Радиус сходимости Определение. Степенным рядом называется функциональный ряд вида c 0 + c (t a) + c 2 (t a) 2 + + c (t a) + = c (t a), () где c 0, c, c 2,..., c,... C называются коэффициентами степенного

Подробнее

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее