Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Размер: px
Начинать показ со страницы:

Download "Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве"

Транскрипт

1 Аналитическая геометрия Модуль 2 Аналитическая геометрия на плоскости и в пространстве Лекция 6 Аннотация Уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору Общее уравнение плоскости Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой Уравнение плоскости "в отрезках" Взаимное расположение двух плоскостей Угол между двумя плоскостями Расстояние от точки до плоскости Расположение заданной точки относительно сторон плоскости 2 Плоскость в пространстве Простейшей поверхностью является плоскость Плоскость в пространстве Oxyz можно задать разными способами Каждому из них соответствует определенный вид ее уравнения 2 Уравнение плоскости, проходящей через точку перпендикулярно заданному вектору Рассмотрим в пространстве некоторую плоскость Пусть точка M0( x0, y0, z0), а ненулевой вектор n ( ABC,, ) перпендикулярен этой плоскости (рис2)

2 Рис 2 При таких условиях произвольная точка Mxyz (,,) тогда и только тогда, когда вектор MM 0 ( xx0, yy0, z0 z) ортогонален вектору n, те их скалярное произведение равно нулю: M Mn( xx, yy, zz )(, ABC, ) 0 Отсюда Ax ( x ) By ( y ) C( z z) 0 (2) Вектор n называют нормальным вектором плоскости Уравнение (2) называют уравнением плоскости, проходящей через точку перпендикулярно заданному вектору 22 Общее уравнение плоскости Если в уравнении (2) раскрыть скобки и привести подобные слагаемые, то можно получить уравнение Ax By Cz D 0, (22) называемое общим уравнением плоскости Здесь A, B, CD, R и A B C 0 (т е A, B и C не равны нулю одновременно) Меньшова ИВ, 208 2

3 Рассмотрим частные случаи общего уравнения плоскости: Значения коэффициентов Вид общего уравнения Графическое расположение D 0 Ax By Cz 0 Плоскость проходит через начало координат A 0 By Cz D 0 Плоскость параллельна оси Ox B 0 Ax Cz D 0 Прямая, параллельная оси Oy C 0 Ax By D 0 Плоскость параллельна оси Oz A B 0 Cz D 0 Плоскость параллельна плоскости xoy AC 0 By D 0 Плоскость параллельна плоскости xoz B C 0 Ax D 0 Плоскость параллельна плоскости yoz A D 0 By Cz 0 Плоскость параллельна оси Ox и проходит через начало координат B D 0 Ax Cz 0 Прямая, параллельная оси Oy и проходит через начало координат C D 0 Ax By 0 Плоскость параллельна оси Oz и проходит через начало координат A B D 0 z 0 Уравнение плоскости xoy AC D 0 y 0 Уравнение плоскости xoz B C D 0 x 0 Уравнение плоскости yoz Меньшова ИВ, 208 3

4 Пример Составить уравнение плоскости, проходящей через точку M перпендикулярно вектору n (, 2, 3) 0 ( 2;5;) Решение: Воспользуемся уравнением (2): ( x ( 2)) 2 ( y5) 3 ( z ) 0 Раскроем скобки и получим общее уравнение плоскости x 2y3z Уравнение плоскости, проходящей через три данные точки Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость Найдем уравнение плоскости, проходящей через три данные точки M( x, y, z ), M2( x2, y2, z 2) и M3( x3, y3, z 3), не лежащие на одной прямой Пусть произвольная точка Mxyz (,,) MM( xx, yy, zz), MM ( x x, y y, z z), MM ( x x, y y, z z) Составим векторы: Эти векторы лежат на плоскости тогда и только тогда, когда они компланарны, те их смешанное произведение MM MM 2MM 3 0 Запишем это условие в координатной форме: x x yy z z x x y y z z x x y y z z (23) три точки Уравнение (23) называют уравнением плоскости, проходящей через Меньшова ИВ, 208 4

5 Пример Составить уравнение плоскости, проходящей через точки M (2, 3, 4), M2 (, 0, 3) и M3 (4,, 3) Решение: Воспользуемся уравнением (23): x 2 y3 z ( 4) ( 4) ( 4) или x 2 y3 z Раскроем определитель по элементам первой строки: 3 3 ( x 2) ( y3) ( z 4) 0, ( x 2)( 2 4) ( y3)( 7 2) ( z 4)(4 6) 0, ( 7)( x 2) 9( y3) 0( z 4) 0, 7x 9y0z общее уравнение плоскости 24 Уравнение плоскости в отрезках Пусть плоскость отсекает на осях Ox, Oy и Oz соответственно отрезки a, b, и c, те проходит через три точки M ( a,0,0), M 2 (0, b, 0) и M 3 (0, 0, c ) (рис 22) Меньшова ИВ, 208 5

6 Рис 22 Подставим координаты этих точек в уравнение (23) и раскроим определитель Получим x y z (24) a b c Уравнение (24) называют уравнением плоскости в отрезках на осях Им удобно пользоваться при построении плоскости 25 Взаимное расположение двух плоскостей Пусть две плоскости и 2 заданы своими общими уравнениями: : AxByC zd 0 : Ax By Cz D 0 и Две плоскости либо совпадают, либо являются параллельными, либо пересекаются по прямой Тогда A а) если B C D, то плоскости совпадают; A B C D Меньшова ИВ, 208 6

7 A б) если B C D, то плоскости параллельны; A B C D A в) если B B или C, то плоскости пересекаются по A B B C прямой, уравнением которой служит система Ax By Cz D 0; Ax 2 By 2 C2zD2 0 2 Под углом между плоскостями и 2 понимается один из двугранных углов, образованный этими плоскостями Угол между нормальными векторами n ( A, B, C) и n2 ( A2, B2, C2) этих плоскостей равен одному их таких углов Поэтому cos( 2, 2 ) cos(, 2 ) n n nn n n (25) Условие параллельности плоскостей: 2 2 A B C n n2 A2 B2 C2 Условие перпендикулярности плоскостей: 2 n n 2 A A 2 B B 2 C C 2 0 Пример Найти угол между плоскостями :2x 4y8 0 и 2 :2x y 2z 0 Решение: Координаты нормальных векторов плоскостей - n (2,4,0), n (2,, 2) Воспользуемся формулой (25): Меньшова ИВ, 208 7

8 n n2 224 ( ) 02 cos( ) cos( nn, 2) 0 n n ( ) 2 Следовательно, плоскости перпендикулярны 26 Расстояние от точки до плоскости Пусть плоскость задана общим уравнением Ax By Cz D 0 Расстояние от некоторой точки M( x, y, z ) до плоскости можно найти по формуле d Ax By Cz D A B D (26) Пример Найти расстояние от точки M (, 2, 6) до плоскости 2x 4y8 0 Решение: Воспользуемся формулой (26): d Ax By Cz D 2 ( ) A B D Меньшова ИВ, 208 8

9 Меньшова ИВ, 208 9

Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору.

Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Положение плоскости в пространстве можно задать точкой M 0 (x 0, y 0, z 0 ), принадлежащей этой плоскости и вектором

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль 2 Аналитическая геометрия на плоскости и в пространстве Текст 6 (самостоятельное изучение) Аннотация Уравнения прямой в пространстве: как линии пересечения двух плоскостей,

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аннотация Декартова прямоугольная система координат на плоскости и в пространстве. Координаты точки. Связь

Подробнее

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2 Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.2 Аннотация Уравнения прямой в пространстве: общие, канонические, параметрические уравнения прямой и уравнения

Подробнее

Аналитическая геометрия Прямые и плоскости. Линейная алгебра (лекция 10) / 30

Аналитическая геометрия Прямые и плоскости. Линейная алгебра (лекция 10) / 30 Аналитическая геометрия Прямые и плоскости Линейная алгебра (лекция 10) 17.11.2012 2 / 30 Линейная алгебра (лекция 10) 17.11.2012 3 / 30 Расстояние между двумя точками M 1 (x 1, y 1 ) и M 2 (x 2, y 2 )

Подробнее

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. 1 1. Уравнение поверхности и уравнения линии в пространстве. Геометрический смысл уравнений В аналитической геометрии всякую поверхность рассматривают как совокупность

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 5 (самостоятельное изучение) Аннотация Декартова прямоугольная система координат на плоскости и в пространстве Формулы для расстояния

Подробнее

Уравнения прямой в пространстве. Лекция 7

Уравнения прямой в пространстве. Лекция 7 Уравнения прямой в пространстве Лекция 7 1 Параметрические уравнения прямой Перейдём в векторном уравнении прямой в пространстве к координатной форме r ( x; y; z), r ( x ; y ; z ), a ( m; n; p) r r t a

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: В.П.Белкин

РЕШЕНИЕ ЗАДАЧ по теме АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Составитель: В.П.Белкин РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: ВПБелкин Занятие Прямая на плоскости Пример Определить коэффициенты k, b в уравнении прямой y = kx+ b, если прямая определена уравнением x y=

Подробнее

уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим

уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим Уравнения плоскости. Общее уравнение плоскости. Неполные уравнения плоскости. Уравнение плоскости в отрезках Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей. Уравнение

Подробнее

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве.

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве. Аналитическая геометрия в пространстве Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию Прямоугольная система координат Охy в пространстве

Подробнее

( ) ( ) ( ) x x + y y + z z = R

( ) ( ) ( ) x x + y y + z z = R Глава II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Лекции 0-2 2. УРАВНЕНИЯ ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ 2.. Основные понятия Поверхность и ее уравнение Поверхность в пространстве можно рассматривать

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра высшей математики НЛ Воронцова АВ Маргулян НК Орехова ЕС Филимонова АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Подробнее

Лекция 1.3. Уравнения плоскости и прямой

Лекция 1.3. Уравнения плоскости и прямой Лекция.. Уравнения плоскости и прямой Аннотация: Помимо векторного, общего, нормального и в отрезках дается еще и параметрическое уравнение плоскости, с целью обобщения в дальнейшем понятия плоскости в

Подробнее

ЛЕКЦИЯ N14. Плоскость. 1.Нормальный вектор плоскости. Уравнение плоскости, проходящей через точку.

ЛЕКЦИЯ N14. Плоскость. 1.Нормальный вектор плоскости. Уравнение плоскости, проходящей через точку. ЛЕКЦИЯ N4. Плоскость и прямая в пространстве. Плоскость.....Нормальный вектор плоскости. Уравнение плоскости, проходящей через точку.....общее уравнение плоскости.... 4.Угол между плоскостями. Условия

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике МИНИСТЕРСТВО СВЯЗИ И ИНФОРМАТИЗАЦИИ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СВЯЗИ» Кафедра математики и физики ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Подробнее

Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич

Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич План занятия. Содержание раздела «Аналитическая геометрия» Уравнение прямой на плоскости: с угловым коэффициентом общее

Подробнее

Лекция 31 Глава 3. Аналитическая геометрия в пространстве

Лекция 31 Глава 3. Аналитическая геометрия в пространстве Лекция Глава Аналитическая геометрия в пространстве Плоскость в пространстве Уравнение плоскости проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка ) и ненулевой

Подробнее

3. Плоскость 1. Общее уравнение плоскости и его исследование

3. Плоскость 1. Общее уравнение плоскости и его исследование 3. Плоскость. Общее уравнение плоскости и его исследование ЗАДАЧА. Записать уравнение плоскости, проходящей через точку M 0 ( 0 ; 0 ; 0 ), перпендикулярно вектору N { A, B, C} Вектор, перпендикулярный

Подробнее

Уравнение плоскости. Шульц Денис Сергеевич

Уравнение плоскости. Шульц Денис Сергеевич Уравнение плоскости. Шульц Денис Сергеевич План занятия. Общее уравнение плоскости Взаимное расположение плоскостей Расстояние от точки до плоскости Типовые задачи Общее уравнение плоскости. Ax+By+Cz+D=0

Подробнее

Элементы аналитической геометрии в курсе геометрии классов

Элементы аналитической геометрии в курсе геометрии классов Элементы аналитической геометрии в курсе геометрии 1-11 классов 1. Введение. Уравнение прямой. Уравнение плоскости 4. задач с использованием уравнений прямой и плоскости 5. Расстояние и отклонение точки

Подробнее

Линейная алгебра и аналитическая геометрия

Линейная алгебра и аналитическая геометрия Линейная алгебра и аналитическая геометрия Тема: Плоскость Лектор Имас О.Н. 016 г. Плоскость 1. Общее уравнение плоскости Опр. Плоскостью называется геометрическое место точек, координаты которых удовлетворяют

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

Раздел 6. ПРЯМАЯ НА ПЛОСКОСТИ. Лекция 12. Тема: Прямая на плоскости. 6.1 Системы координат на плоскости (простейшие задачи)

Раздел 6. ПРЯМАЯ НА ПЛОСКОСТИ. Лекция 12. Тема: Прямая на плоскости. 6.1 Системы координат на плоскости (простейшие задачи) Раздел 6 ПРЯМАЯ НА ПЛОСКОСТИ Лекция Тема: Прямая на плоскости 6 Системы координат на плоскости (простейшие задачи) Прямая, которая служит для изображения действительных чисел, на которой выбраны начальная

Подробнее

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия»

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия» ТИПОВОЙ РАСЧЕТ «Векторная алгебра Аналитическая геометрия» Задание 1: а) показать, что векторы p, q, r образуют базис Найти координаты вектора x в этом базисе; б) проверить коллинеарность векторов и c

Подробнее

F(x,y,z) = 0, (2) где F(x,y,z) многочлен степени n.

F(x,y,z) = 0, (2) где F(x,y,z) многочлен степени n. Аналитическая геометрия Аналитическая геометрия раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности второго порядка) исследуются средствами алгебры. Линией

Подробнее

Плоскость. Вариант 6

Плоскость. Вариант 6 Плоскость Вариант 1 1.) Найти уравнение плоскости, проходящей через точку М(1;2;-1) и параллельной плоскости XOY. 2.) На оси ОZ найти точку, удаленную от плоскости 3 x + 7 = 0 на расстояние d = 1. 14 Вариант

Подробнее

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое пособие МОСКВА Кафедра математики ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое

Подробнее

Лекция 6. Прямая на плоскости

Лекция 6. Прямая на плоскости Лекция 6 Прямая на плоскости Уравнение прямой, проходящей через заданную точку и имеющей заданный вектор нормали l O b y На плоскости, где введена прямоугольная система координат, рассмотрим прямую l.

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2)

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2) Занятие 9 Прямая на плоскости и плоскость в пространстве На этом занятии мы будем заниматься кривыми и поверхностями, которые задаются простейшими уравнениями алгебраическими уравнениями первой степени.

Подробнее

Уравнение прямой на плоскости.

Уравнение прямой на плоскости. Уравнение прямой на плоскости. Каноническое уравнение прямой. Пусть прямая параллельна вектору {, } и проходит через точку (, ) тогда уравнение этой прямой может быть записано в виде,. () Уравнение ()

Подробнее

Плоскость. Прямая в пространстве 1

Плоскость. Прямая в пространстве 1 Объект изучения геометрические элементы: точки, прямые, линии, плоскости, поверхности; Метод изучения метод координат; Основные задачи 1. Задано ГМТ, т.е. совокупность точек, обладающих характерным свойством.

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

Прямая линия и плоскость в пространстве. Линейная алгебра (лекция 11) / 37

Прямая линия и плоскость в пространстве. Линейная алгебра (лекция 11) / 37 Прямая линия и плоскость в пространстве Линейная алгебра (лекция 11) 24.11.2012 2 / 37 Прямая линия и плоскость в пространстве Расстояние между двумя точками M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 )

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости

Подробнее

{ прямая как пересечение двух плоскостей векторно-параметрическое уравнение прямой уравнение прямой, проходящей через две заданные точки уравнение

{ прямая как пересечение двух плоскостей векторно-параметрическое уравнение прямой уравнение прямой, проходящей через две заданные точки уравнение { прямая как пересечение двух плоскостей векторно-параметрическое уравнение прямой уравнение прямой, проходящей через две заданные точки уравнение плоскости, проходящей через заданную точку параллельно

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

8. Дать определение ортогональной скалярной проекции вектора на направление.

8. Дать определение ортогональной скалярной проекции вектора на направление. 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения

Подробнее

Линейная алгебра и аналитическая геометрия. Тема: Плоскость. Лектор Пахомова Е.Г г.

Линейная алгебра и аналитическая геометрия. Тема: Плоскость. Лектор Пахомова Е.Г г. Линейная алгебра и аналитическая геометрия Тема: Плоскость Лектор Пахомова Е.Г. г. 3. Плоскость. Общее уравнение плоскости и его исследование ЗАДАЧА. Записать уравнение плоскости, проходящей через точку

Подробнее

R может быть задана с помощью

R может быть задана с помощью 5... Уравнения плоскости. Плоскость в пространстве 5.. ПЛОСКОСТЬ. R может быть задана с помощью n, B, C, вектора перпендикулярного плоскости, и точки M,, этой плоскости. Вектор n, B, C,, лежащей на E перпендикулярный

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аннотация Скалярные и векторные величины. Понятие геометрического вектора, как направленного отрезка. Длина вектора. Нуль-вектор,

Подробнее

Прямые и плоскости в пространстве

Прямые и плоскости в пространстве Прямые и плоскости в пространстве Моденов ПС, Пархоменко АС Сборник задач по аналитической геометрии Москва - Ижевск: ЗАО НИЦ "Регулярная и хаотическая динамика 2002 384 с 502 Составить параметрические

Подробнее

Линейная алгебра Лекция 9. Прямая линия на плоскости

Линейная алгебра Лекция 9. Прямая линия на плоскости Линейная алгебра Лекция 9 Прямая линия на плоскости Пусть дана декартовая прямоугольная система координат Oxy на плоскости Геометрическое место точек (ГМТ) Определение Уравнением линии на плоскости Оху

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Задачник по темам «ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» для студентов очной

Подробнее

) - с координатами O M в O x

) - с координатами O M в O x Преобразования на плоскости Преобразования в пространстве 3 Выражение направляющих косинусов в матричной форме Преобразования на плоскости Пусть на плоскости координат Oxy и O. P заданы две правые декартовы

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1 1 Простейшие задачи аналитической геометрии на плоскости 11 Расстояние между двумя точками Рассмотрим прямоугольную систему координат (декартовую, рис Рис 1 Любой точки M соответствуют координаты OA x

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

Аналитическая геометрия. Задачи для самостоятельного решения.

Аналитическая геометрия. Задачи для самостоятельного решения. Аналитическая геометрия Задачи для самостоятельного решения 1 Векторы 11 Даны вершины треугольника: A( 1; 2; 4), B ( 4; 2;0) и C(3; 2; 1) Найти угол между медианой AM и стороной AB 12 Выяснить при каком

Подробнее

РТУ-МИРЭА ГОРШУНОВА Т.А. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии.

РТУ-МИРЭА ГОРШУНОВА Т.А. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии. y М(x, y) 0 x Определение. Уравнением линии (кривой) на плоскости Оху называется уравнение, которому

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

Глава 8. Прямые и плоскости. 8.1 Прямая на плоскости Аффинные задачи

Глава 8. Прямые и плоскости. 8.1 Прямая на плоскости Аффинные задачи Глава 8 Прямые и плоскости 8.1 Прямая на плоскости 8.1.1 Аффинные задачи В этом разделе система координат аффинная. 1. Указать хотя бы один направляющий вектор прямой, заданной уравнением: 1) y = kx+b;

Подробнее

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость

Подробнее

Ирина Алексеевна Чернявская Практикум по аналитической геометрии

Ирина Алексеевна Чернявская Практикум по аналитической геометрии Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Ирина Алексеевна Чернявская Для

Подробнее

Кафедра высшей математики. Дудникова Т.В., Караваева Н.Н. ВЫСШАЯ МАТЕМАТИКА. Раздел: Аналитическая геометрия

Кафедра высшей математики. Дудникова Т.В., Караваева Н.Н. ВЫСШАЯ МАТЕМАТИКА. Раздел: Аналитическая геометрия Федеральное агентство по образованию ЭЛЕКТРОСТАЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (филиал) Федерального государственного образовательного учреждения высшего профессионального образования «Государственный

Подробнее

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения А. В. Мезенцев П. П. Скачков Векторная алгебра и аналитическая геометрия Методические рекомендации

Подробнее

анализ взаимного расположения прямых и плоскостей, поиск расстояния от точки до прямой и плоскости;

анализ взаимного расположения прямых и плоскостей, поиск расстояния от точки до прямой и плоскости; Практикум по теме 5 Методические указания по выполнению практикума. Целью практикума является более глубокое усвоение материала контента темы 5, а также развитие следующих навыков: задание прямых на плоскости

Подробнее

МАТЕМАТИКА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

МАТЕМАТИКА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ООО «Резольвента», wwwesolventau, esolventa@listu, (495) 59-8- Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу АНАЛИТИЧЕСКАЯ

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» И.А. ЧЕРНЯВСКАЯ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (решебник) Ростов-на-Дону

Подробнее

Аналитическая геометрия. Лекция 1.4

Аналитическая геометрия. Лекция 1.4 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Вычислительная математика» Г Е О М Е Т Р И Я. по дисциплине «Высшая математика»

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Вычислительная математика» Г Е О М Е Т Р И Я. по дисциплине «Высшая математика» 2 8 7 4 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Вычислительная математика» Г Е О М Е Т Р И Я по дисциплине «Высшая математика» МОСКВА - 2008 М ОСКОВСКИЙ ГОСУДАРСТВЕННЫ Й

Подробнее

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р.

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р. Векторная алгебра Аналитическая геометрия Ищанов ТР h://schowru/veor-lger-lches-geomerhml Задача Написать разложение вектора по векторам r 8 r Требуется представить вектор в виде r где числа Найдем их

Подробнее

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора Задача Кузнецов Аналитическая геометрия 1-3 Написать разложение вектора по векторам : Искомое разложение вектора имеет вид: Или в виде системы: Получаем: Ко второй строке прибавим третью: Вычтем из первой

Подробнее

На плоскости. 1, то такое уравнение называется нормализованным уравнением прямой. c. 2 x x y y. x 2t. 1 S x y

На плоскости. 1, то такое уравнение называется нормализованным уравнением прямой. c. 2 x x y y. x 2t. 1 S x y Уравнение прямой в общем виде имеет вид c. На плоскости Если, то такое уравнение называется нормализованным уравнением прямой. c При этом величина равна расстоянию от данной прямой до начала координат.

Подробнее

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1 Лекция - Тема: Метод координат в пространстве Преобразование координат План лекции АСК в пространстве Расстояние между точками и деление отрезка в данном отношении (в пространстве) ПДСК в пространстве

Подробнее

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет,

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению плоскости. Излагаемый в ней материал

Подробнее

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения»

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Государственное образовательное учреждение Среднего профессионального образования «Котовский индустриальный техникум» МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Котовск, 4 г. Учебное

Подробнее

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА»

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ВАРИАНТ Даны вершины треугольника А ( ) В ( ) С ( ) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

Линейная алгебра Лекция 7. Векторы

Линейная алгебра Лекция 7. Векторы Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов

Подробнее

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами. Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор

Подробнее

4. Координаты вектора

4. Координаты вектора 4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют

Подробнее

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Модуль 3 для класса. Учебно-методическая часть./

Подробнее

Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов:

Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов: 1 2 Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов: изучение материала по учебникам, решение задач, самопроверка

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ 1 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту:

ДОМАШНЕЕ ЗАДАНИЕ 1 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту: ДОМАШНЕЕ ЗАДАНИЕ Для выполнения домашнего задания Вам необходимо, пользуясь табл., заполнить первую строку табл., затем выписать соответствующие Вашему номеру варианта данные из табл.. Например, Вы учитесь

Подробнее

ВАРИАНТ 16 M Доказать, что прямые

ВАРИАНТ 16 M Доказать, что прямые ВАРИАНТ 16 1 Через точки M 1 (3 4) и M (6 ) проведена прямая Найти точки пересечения этой прямой с осями координат Составить уравнения сторон треугольника для которого точки A ( 1 ) B ( 3 1) C (0 4) являются

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ Балаковский инженерно-технологический институт - филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МАТРИЦЫ: а) Определение, виды матриц, операции над матрицами (сложение матриц, умножение матрицы на число, умножение матриц, транспонирование),

Подробнее

Итоговый тест. Время выполнения 100 минут. Расстояние между точками A ( 1; равно. 1)5, 2)3, 3)41, 4)7 Ответ:1) 2

Итоговый тест. Время выполнения 100 минут. Расстояние между точками A ( 1; равно. 1)5, 2)3, 3)41, 4)7 Ответ:1) 2 Итоговый тест. Время выполнения минут. Расстояние между точками A ( ; ) и B( ;) ), ), ), )7 Ответ:) равно Координаты середины отрезка, соединяющего точки A ( ; ) и B ( ;) ) (;); ) (;), ) (;), ) (;) Ответ:)

Подробнее

Математика (БкПл-100, БкК-100)

Математика (БкПл-100, БкК-100) Математика (БкПл-100, БкК-100) М.П. Харламов 2009/2010 учебный год, 2-й семестр Лекция 9. Элементы аналитической геометрии 1 Что изучает аналитическая геометрия? Аналитическая геометрия изучает свойства

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M

Деление отрезка в данном отношении Пусть M 1. = λ. (7) . Если же λ < 0, то точка M лежит вне отрезка M 1M Лекция 8 Тема: Деление отрезка в данном отношении Ориентация плоскости Угол между векторами на ориентированной плоскости План лекции Деление отрезка в данном отношении Ориентация плоскости 3 Угол между

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

Векторная алгебра и аналитическая геометрия

Векторная алгебра и аналитическая геометрия Федеральное агентство по образованию Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Векторная алгебра и аналитическая геометрия Методические указания к решению задач Санкт-Петербург

Подробнее

Курс лекций подготовлен доц. Мусиной М.В. Аналитическая геометрия на плоскости.

Курс лекций подготовлен доц. Мусиной М.В. Аналитическая геометрия на плоскости. Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости понимают способ,

Подробнее

Основные задачи аналитической геометрии. 1. Способы задания линии на плоскости.

Основные задачи аналитической геометрии. 1. Способы задания линии на плоскости. Основные задачи аналитической геометрии Аналитическая геометрия раздел математики, в котором изучаются геометрические объекты с помощью алгебраических методов. Основным методом аналитической геометрии

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 05 setgray0 05 setgray1 1 Консультация 7 ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ ЗАДАЧА 1 Представить прямую x x 0 a = y y 0 b = z z 0 c как линию пересечения плоскостей, параллельных осям Ox и Oy Система координат

Подробнее