Лекция: Графы. Основные понятия. Связные графы. Деревья. Остовное дерево. Число висячих вершин в остовном дереве.

Размер: px
Начинать показ со страницы:

Download "Лекция: Графы. Основные понятия. Связные графы. Деревья. Остовное дерево. Число висячих вершин в остовном дереве."

Транскрипт

1 Лекция: Графы. Основные понятия. Связные графы. Деревья. Остовное дерево. Число висячих вершин в остовном дереве. Лектор - доцент Селезнева Светлана Николаевна Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Ломоносова Лекции на сайте

2 Определение графа (Неориентированным) графом G называется пара (V, E), где V = {v 1, v 2,..., v p } множество вершин; E = {e 1, e 2,..., e q } множество ребер, в котором каждое ребро e i есть неупорядоченная пара вершин (v i1, v i2 ), где v i1, v i2 V. Обозначения: V (G) множество вершин графа G, E(G) множество ребер графа G, v(g) число вершин в графе G, e(g) число ребер в графе G.

3 Петли и кратные ребра Ребро e i = (v i1, v i1 ) называется петлей. Ребра e i = (v i1, v i2 ) и e j = (v i1, v i2 ), i j, называются кратными ребрами. Как правило, мы будем рассматривать графы без петель и кратных ребер.

4 Смежность Говорят, что ребро e i = (v i1, v i2 ) соединяет вершины v i1 и v i2, или вершины v i1 и v i2 инцидентны ребру e i. При этом вершины v i1 и v i2 называются концами ребра e i, или смежными (соседними) по ребру e i.

5 Степень вершины Степенью d G (v) вершины v V в графе G = (V, E) называется число инцидентных ей ребер. Если d G (v) = 0, то вершина v называется изолированной в графе G, если d G (v) = 1, то вершина v называется висячей в графе G. Обозначения: δ(g) = min d G (v) и (G) = max d G (v) v V (G) v V (G) соответственно, минимальная и максимальная степени вершин в графе G. Теорема Для каждого графа G = (V, E) верно, что d G (v) = 2 E. v V 2. В каждом графе число вершин, имеющих нечетную степень, четно.

6 Диаграмма графа Графы можно изображать в виде диаграмм. Вершины изображаются точками (или кружочками). Ребро e i = (v i1, v i2 ) изображается линией, соединяющей вершины (точки) v i1 и v i2. Пусть G = (V, E), где V = {1, 2, 3}, E = {e 1, e 2, e 3 }, где e 1 = (1, 2), e 2 = (1, 2) и e 3 = (1, 3).

7 Диаграмма графа Графы можно изображать в виде диаграмм. Вершины изображаются точками (или кружочками). Ребро e i = (v i1, v i2 ) изображается линией, соединяющей вершины (точки) v i1 и v i2. Пусть G = (V, E), где V = {1, 2, 3}, E = {e 1, e 2, e 3 }, где e 1 = (1, 2), e 2 = (1, 2) и e 3 = (1, 3). 3 2 G : e 3 e 1 e 2 1

8 Пути в графе Маршрутом в графе G = (V, E) из вершины v i0 в вершину v il называется последовательность вершин и ребер графа G v i0 e i1 v i1 e i2 v i2... v il 1 e il v il, в которой e ij = (v ij 1, v ij ) E для каждого j = 1,..., l. При этом вершина v i0 называется началом маршрута, вершина v il называется концом маршрута. Число l ребер маршрута называется его длиной. Для графов без петель и кратных ребер маршрут однозначно определяется последовательностью вершин v i0 v i1 v i2... v il 1 v il. Путь это маршрут без повторений ребер. Простой путь это путь без повторений вершин.

9 Циклы в графе Замкнутый маршрут это маршрут, в котором первая и последняя вершины совпадают. Цикл это замкнутый маршрут без повторений ребер. Простой цикл это цикл, в котром все вершины, кроме последней, различны.

10 Пример В графе G последовательность 1e 1 2e 2 1e 3 3 является путем из вершины 1 в вершину 3 длины 3.

11 Пример В графе G последовательность 1e 1 2e 2 1e 3 3 является путем из вершины 1 в вершину 3 длины 3. 3 G : 2 1

12 Пример В графе G последовательность 1e 1 2e 2 1e 3 3 является путем из вершины 1 в вершину 3 длины 3. 3 G : 1 2

13 Пример В графе G последовательность 1e 1 2e 2 1e 3 3 является путем из вершины 1 в вершину 3 длины 3. 3 G : 1 2

14 Пример В графе G последовательность 1e 1 2e 2 1e 3 3 является путем из вершины 1 в вершину 3 длины 3. 3 G : 1 2

15 Подграфы Граф H = (V, E ) называется подграфом графа G = (V, E), если V V, E E. G e, где e E, это граф G e = (V, E \ {e}). G v, где v V, это граф с множеством вершин V \ {v} и с множеством ребер E без всех ребер с концами в вершине v. G + e, где e = (v, w), e / E, это граф G + e = (V {v, w}, E {e}).

16 Связность Граф G = (V, E) называется связным, если для каждой пары вершин v, w V в графе G есть путь из вершины v в вершину w. Если граф G не является связным, каждый максимальный по включению его связный подграф называется компонентой связности.

17 Деревья Дерево это связный граф без циклов. Теорема 2. Каждое дерево с p вершинами содержит (p 1) ребро. Следствие. Каждый связный граф с p вершинами содержит не менее (p 1) ребер. Теорема 3. В каждом дереве найдется не менее двух висячих вершин.

18 Остовные деревья Остовным деревом связного графа G называется любой его пограф D, содержащий все вершины графа G и являющийся деревом. Теорема 4. В каждом связном графе G = (V, E) найдется остовное дерево. Доказательство (1-й способ). Если в графе G нет циклов, то он является своим остовным деревом. Иначе, рассмотрим в графе G цикл. Пусть e ребро из этого цикла. Повторим рассуждения для графа G e, который, очевидно, также является связным. Т.к. на каждом шаге мы разрываем хотя бы один цикл графа G, а циклов конечное число, то через конечное число шагов мы получим дерево. Оно и есть остовное дерево графа G.

19 Остовные деревья Доказательство (2-й способ). Пусть V = {v 1,..., v p }. Шаг 1. Пусть D 1 = (V 1, ), где V 1 = {v 1 }. Шаг (i + 1) (i < p 1). Пусть на шаге i построено дерево D i = (V i, E i ), где V i = i. Т.к. граф G связный, найдется хотя бы одно ребро e = (u, w) E, такое что один его конец u лежит в V i, а другой w в V \ V i. Тогда пусть D i+1 = (V i {w}, E i e). Дерево D p остовное для графа G.

20 Число остовных деревьев Полный граф, или клика K n это граф с n вершинами, в котором любые две вершины соединены ребром. Теорема 5. В полном графе K n есть n n 2 остовных деревьев. Доказательство. Пусть V = {1, 2,..., n}. Для каждого остовного дерева D 1 графа K n построим его код k(d 1 ) = (j 1,..., j n 2 ). Пусть i 1 это висячая вершина c минимальным номером в дереве D 1. Она смежна с единственной вершиной j 1. Повторим рассуждения для дерева D 2 = D 1 i 1 и т.д. Останавливаемся, когда получим дерево D n 1, являющееся ребром.

21 Число остовных деревьев Доказательство (продолжение). Пусть получен код k(d 1 ) = (j 1,..., j n 2 ). Как по нему восстановить дерево D 1? Заметим, что если i не содержится в коде k(d 1 ), то i это висячая вершина дерева D. Пусть V 1 = V. Выбираем минимальный номер i 1 из V 1, не содержащийся в k(d 1 ). Соединяем вершины i 1 и j 1. Пусть V 2 = V 1 \ {i 1 }. Повторяем рассуждения для множества V 2 и кода (j 2,..., j n 2 ). Заметим, что множество V n 1 содержит ровно две вершины. Их нужно соединить ребром. Получим дерево D 1.

22 Число остовных деревьев Доказательство (продолжение). Значит, число остовных деревьев в графе K n совпадает с числом кодов (j 1,..., j n 2 ), где j 1,..., j n 2 V (K n ). Т.е. число остовных деревьев равно n n 2.

23 Число висячих вершин А сколько висячих вершин может быть в остовном дереве графа G? Теорема 6. Для каждого связного графа G можно построить остовное дерево с не менее, чем (G), висячими вершинами. Доказательство. Будем строить остовное дерево так: сначала выберем вершину v V, такую, что d G (v) = (G), вместе со всеми исходящими из нее ребрами. Затем будем добавлять к этой звезде ребра графа G так, чтобы не появились циклы. В итоге построим остовное дерево, в котором будет не менее, чем (G) висячих вершин.

24 Достижимость числа висячих вершин Теорема 7. Пусть D 1 и D два остовных дерева связного графа G с m и n висячими вершинами соответственно (m < n). Тогда для каждого числа k, m < k < n, в графе G найдется остовное дерево с k висячими вершинами. Доказательство. Пусть e 1 E(D ) \ E(D 1 ). Рассмотрим граф G 1 = D 1 + e 1. В нем есть цикл C 1. В этом цикле выберем ребро e 1 / D, и пусть D 2 = G 1 e 1. Граф D 2 дерево, повторим для него рассуждения и т.д. В итоге получим последовательность остовных деревьев D 1, D 2,..., D. Заметим, что число висячих вершин в соседних деревьях D j и D j+1 отличается не более, чем на 2.

25 Достижимость числа висячих вершин Доказательство (продолжение). Пусть для некоторого k, m < k < n, в последовательности остовных деревьев нет дерева k висячими вершинами. Значит, найдутся два соседних дерева D j и D j+1, такие, что в дереве D j (k 1) висячих вершин, а в дереве D j+1 (k + 1) висячих вершин. Рассмотрим цикл C j в графе G j. Концы ребра ej имеют степень больше двух, а концы ребра e j имеют степень два в цикле C j. Значит, в цикле C j найдется такое ребро e, что один его конец имеет стень два, а другой его конец имеет степень, большую двух. Тогда дерево D = G j e остовное дерево с j вершинами в графе G.

26 Большое число висячих вершин Теорема 8. В связном графе G c δ(g) 3 найдется остовное дерево с не менее, чем v(g)/4 висячими вершинами. Доказательство. Опишем алгоритм построения такого остовного дерева. Пусть дерево D это подграф графа G. Висячую вершину дерева D назовем стабильной, если все смежные ей вершины принадлежат также дереву D. Обозначим через u(d) число его висячих вершин дерева D, через s(d) число его стабильных висячих вершин. Пусть α(d) = 3u(D)/4 + s(d)/4 v(d)/4.

27 Большое число висячих вершин Доказательство (продолжение). Остовное дерево будем строить по индукции. Базис индукции: выберем в графе G произвольную вершину v. Пусть D 1 это эта вершина вместе со всеми исходящими из нее ребрами и их вторыми концами. Тогда, т.к. d G (v) 3, верно α(d 1 ) 3d G (v)/4 (d G (v) + 1)/4 1/2.

28 Большое число висячих вершин Доказательство (продолжение). Пусть уже построено дерево D j. Пусть W = V (G) \ V (D j ). 1. Если в дереве D j есть невисячая вершина v, смежная с некоторой вершиной w W, то пусть D j+1 = D j + (v, w). Тогда α(d j+1 ) α(d j ) 3/4 1/4 = 1/2. 2. Иначе, если в дереве D j есть вершина v, смежная с хотя бы с двумя вершинами w 1, w 2 W, то пусть D j+1 = D j + (v, w 1 ) + (v, w 2 ). Тогда α(d j+1 ) α(d j ) 3/4 2 (1/4) = 1/4. 3. Иначе, если в множестве W есть вершина w, смежная с какой-то вершиной v дерева D j и хотя бы двумя вершинами w 1, w 2 W, то пусть D j+1 = D j + (v, w) + (w, w 1 ) + (w, w 2 ). Тогда α(d j+1 ) α(d j ) 3/4 3 (1/4) = 0.

29 Большое число висячих вершин Доказательство (продолжение). 4. Иначе, в множестве W есть вершина w, смежная с вершинами дерева D j. Т.к. п.3 не выполняется, то вершина w смежна не более, чем с одной вершиной из множества W. Но d G (v) 3, поэтому вершина w смежна хотя бы с двумя вершинами v, v 1 V (D j ). Пусть D j+1 = D j + (v, w). Т.к. п.п.1-2 не выполняются, вершина v 1 висячая в дереве D j и смежна рово с одной вершиной из множества W, а именно, с вершиной w. Поэтому в дереве D j+1 висячая вершина v 1 стабильная. Тогда α(d j+1 ) α(d j ) 1/4 1/4 = Если п.п.1-4 неприменимы, то остовное дерево D построено.

30 Большое число висячих вершин Доказательство (продолжение). В остовном дереве D все висячие вершины стабильные. Поэтому Или α(d) = u(d) v(d)/4. u(d) = v(g)/4 + α(d). Но α(d) α(d 1 ), т.к. на каждом шаге построения мы только увеличивали этот параметр. Отсюда получаем, что u(d) v(g)/4.

31 Конец лекции

Лекция 4. Графы. Основные понятия. Связные графы. Деревья. Остовное дерево. Число висячих вершин в остовном дереве.

Лекция 4. Графы. Основные понятия. Связные графы. Деревья. Остовное дерево. Число висячих вершин в остовном дереве. Лекция 4. Графы. Основные понятия. Связные графы. Деревья. Остовное дерево. Число висячих вершин в остовном дереве. Лектор д.ф.-м.н. Селезнева Светлана Николаевна Лекции по «Дискретным моделям». Магистратура,

Подробнее

Лектор Селезнева Светлана Николаевна Лекции на сайте факультет ВМК МГУ имени М.В.

Лектор Селезнева Светлана Николаевна Лекции на сайте  факультет ВМК МГУ имени М.В. Лекция 3. Деревья. Остовные деревья. Число остовных деревьев помеченного полного графа. Достижимость промежуточного числа висячих вершин в остовном дереве. Оценка числа висячих вершин в остовном дереве.

Подробнее

1 Графы. Простейшие свойства графов.

1 Графы. Простейшие свойства графов. Магистратура факультета ВМК МГУ имени М.В. Ломоносова Лекции по курсу «Дискретные модели». Лектор доцент Селезнева Светлана Николаевна 1 Графы. Простейшие свойства графов. Графом G называется пара множеств

Подробнее

Лекция: Хроматическое число графа. Критерий двухцветности графа. Теоремы о верхних и нижних оценках хроматического числа графа.

Лекция: Хроматическое число графа. Критерий двухцветности графа. Теоремы о верхних и нижних оценках хроматического числа графа. Лекция: Хроматическое число графа. Критерий двухцветности графа. Теоремы о верхних и нижних оценках хроматического числа графа. Лектор - доцент Селезнева Светлана Николаевна Лекции по Дискретным моделям.

Подробнее

Лектор Селезнева Светлана Николаевна Лекции на сайте факультет ВМК МГУ имени М.В.

Лектор Селезнева Светлана Николаевна Лекции на сайте  факультет ВМК МГУ имени М.В. Лекция 1. Графы. Основные определения. Простейшие свойства графов. Пути и цепи в графах. Связность, k-связность. Деревья, корневые деревья. Остовные деревья. Лектор Селезнева Светлана Николаевна selezn@cs.msu.su

Подробнее

Лектор доцент Селезнева Светлана Николаевна Лекции на сайте Факультет ВМК МГУ имени М.В.

Лектор доцент Селезнева Светлана Николаевна Лекции на сайте  Факультет ВМК МГУ имени М.В. Лекция: Графы и сети. Оценка числа псевдографов с q ребрами. Оценка числа деревьев с q ребрами. Планарные графы. Формула Эйлера для планарных графов. Наибольшее число ребер в планарных графах. Непланарность

Подробнее

Лекция 5. Графы. Раскраски графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа.

Лекция 5. Графы. Раскраски графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа. Лекция 5. Графы. Раскраски графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа. Лектор д.ф.-м.н. Селезнева Светлана Николаевна selezn@cs.msu.su Лекции

Подробнее

Лектор д.ф.-м.н. Селезнева Светлана Николаевна. Лекции по «Дискретным моделям». Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор д.ф.-м.н. Селезнева Светлана Николаевна. Лекции по «Дискретным моделям». Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция 6. Графы. Наследственные свойства графов. Оценка числа ребер в графах с наследственным свойством. Экстремальные графы. Наибольшее число ребер в планарных графах и графах без треугольников с заданным

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция: Графы. Примеры применений графов. Транспортная задача. Поток в сети, теорема Форда и Фалкерсона о величине максимального потока в сети. Алгоритм построения максимального потока в сети. Лектор -

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция 7. Задача выбора маршрутов и ее частный случай задача распределения рейсов по дням. Графовая модель для задачи распределения рейсов. Хроматическое число графа. Критерий двураскрашиваемости графа.

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция 5. Графы. Примеры применений графов. Транспортная задача. Поток в сети, теорема Форда и Фалкерсона о величине максимального потока в сети. Алгоритм построения максимального потока в сети. Лектор

Подробнее

Лектор Селезнева Светлана Николаевна Лекции на сайте факультет ВМК МГУ имени М.В.

Лектор Селезнева Светлана Николаевна Лекции на сайте  факультет ВМК МГУ имени М.В. Лекция 6. Наследственные свойства графов. Наибольшее число ребер в графах с наследственным свойством. Наибольшее число ребер в планарных графах. Наибольшее число ребер в графах без полного подграфа с n

Подробнее

Лекция: Наследственные свойства графов. Экстремальные графы. Числа Рамсея.

Лекция: Наследственные свойства графов. Экстремальные графы. Числа Рамсея. Лекция: Наследственные свойства графов. Экстремальные графы. Числа Рамсея. Лектор - доцент Селезнева Светлана Николаевна факультет ВМК МГУ имени М.В. Ломоносова Лекции на сайте http://mk.cs.msu.su Наследственное

Подробнее

Лектор Селезнева Светлана Николаевна Лекции на сайте факультет ВМК МГУ имени М.В.

Лектор Селезнева Светлана Николаевна Лекции на сайте  факультет ВМК МГУ имени М.В. Лекция 4. Раскраски вершин графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа. Существование графа без треугольников с произвольно большим хроматическим

Подробнее

Лекция 7. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея.

Лекция 7. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея. Лекция 7. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея. Лектор Селезнева Светлана Николаевна selezn@cs.msu.su факультет ВМК МГУ имени М.В. Ломоносова Лекции на сайте http://mk.cs.msu.ru

Подробнее

Лектор Селезнева Светлана Николаевна Лекции на сайте факультет ВМК МГУ имени М.В.

Лектор Селезнева Светлана Николаевна Лекции на сайте  факультет ВМК МГУ имени М.В. Лекция 2. Точки сочленения и мосты. Связность, k-связность. Двусвязные графы. Компоненты двусвязности (блоки) графа. Дерево блоков и точек сочленения графа. Лектор Селезнева Светлана Николаевна selezn@cs.msu.su

Подробнее

} пространства R и множества E = { e i

} пространства R и множества E = { e i 3 Задание: Дан неориентированный граф G, где V(G) - множество вершин; Е(G) - множество ребер Изобразить его графически Определить степени его вершин Указать висячие/изолированные вершины Является ли граф

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция: Теорема Анселя о разбиениии n-мерного куба на цепи. Теорема о числе монотонных функций алгебры логики. Теорема о расшифровке монотонных функций алгебры логики. Лектор - доцент Селезнева Светлана

Подробнее

Лектор Селезнева Светлана Николаевна Лекции на сайте факультет ВМК МГУ имени М.В.

Лектор Селезнева Светлана Николаевна Лекции на сайте  факультет ВМК МГУ имени М.В. Лекция 5. Раскраски ребер графов. Хроматический индекс графа. Хроматический индекс двудольных графов. Верхняя и нижняя оценки хроматического индекса графа. Лектор Селезнева Светлана Николаевна selezn@cs.msu.su

Подробнее

Лекция: Основные комбинаторные числа. Оценки и асимптотики для комбинаторных чисел.

Лекция: Основные комбинаторные числа. Оценки и асимптотики для комбинаторных чисел. Лекция: Основные комбинаторные числа. Оценки и асимптотики для комбинаторных чисел. Лектор - доцент Селезнева Светлана Николаевна факультет ВМК МГУ имени М.В. Ломоносова Лекции на сайте http://mk.cs.msu.su

Подробнее

Лекция 7: Двудольные графы

Лекция 7: Двудольные графы Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение и пример Определение Граф G = V,E называется двудольным, если существуют

Подробнее

Глава II. Теория графов.

Глава II. Теория графов. Глава II. Теория графов.. Из истории теории графов Родоначальником теории графов является Леонард Эйлер (707 782). В 736 году Эйлер решил задачу о Кенигсбергских мостах. Задача состояла в следующем: «Найти

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В. Лекция: Операции над конечно-автоматными множествами. Дополнение, объединение, пересечение, произведение и итерация автоматных множеств, их автоматность. Лектор - доцент Селезнева Светлана Николаевна Лекции

Подробнее

Ориентированные графы

Ориентированные графы Теория конечных графов Ориентированные графы Лектор: к.ф.-м.н., доцент кафедры прикладной информатики и теории вероятностей РУДН Зарипова Эльвира Ринатовна zarip@mail.ru Литература. Зарипова Э.Р., Кокотчикова

Подробнее

Лектор д.ф.-м.н. Селезнева Светлана Николаевна. Лекции по курсу «Дискретные модели», 1-й курс, магистратура факультета ВМК МГУ имени М.В.

Лектор д.ф.-м.н. Селезнева Светлана Николаевна. Лекции по курсу «Дискретные модели», 1-й курс, магистратура факультета ВМК МГУ имени М.В. Лекция 2. Алгоритм распознавания полноты в P k. Теорема Кузнецова. Замкнутые классы. Классы функций, сохраняющих множество. Классы функций, сохраняющих разбиение. Предполные классы. Лектор д.ф.-м.н. Селезнева

Подробнее

Неформально. Граф -- это множество вершин (точек) и множество ребер (линии), соединяющих между собой все или часть этих точек.

Неформально. Граф -- это множество вершин (точек) и множество ребер (линии), соединяющих между собой все или часть этих точек. Основные понятия теории графов. Граф, или неориентированный граф G = (V, E) -- это упорядоченная пара G = (V, E), где V это непустое множество вершин, а E множество пар (в случае неориентированного графа

Подробнее

Занятие G связен и, если в G удалить любое ребро, получится граф ровно с двумя компонентами связности;

Занятие G связен и, если в G удалить любое ребро, получится граф ровно с двумя компонентами связности; Занятие 4 Деревом называется связный граф без простых циклов длины более двух. Теорема 1 (Эквивалентные определения дерева). Для любого графа G, имеющего ровно n вершин и m ребер, следующие условия эквивалентны:

Подробнее

Лекция: Существенные функции. Три леммы о существенных функциях. Критерий полноты Яблонского. Критерий полноты Слупецкого. Шефферовы функции.

Лекция: Существенные функции. Три леммы о существенных функциях. Критерий полноты Яблонского. Критерий полноты Слупецкого. Шефферовы функции. Лекция: Существенные функции. Три леммы о существенных функциях. Критерий полноты Яблонского. Критерий полноты Слупецкого. Шефферовы функции. Лектор доцент Селезнева Светлана Николаевна selezn@cs.msu.su

Подробнее

Лекция: Регулярные выражения и регулярные множества. Теорема Клини о совпадении классов автоматных множеств и регулярных множеств.

Лекция: Регулярные выражения и регулярные множества. Теорема Клини о совпадении классов автоматных множеств и регулярных множеств. Лекция: Регулярные выражения и регулярные множества. Теорема Клини о совпадении классов автоматных множеств и регулярных множеств. Лектор - доцент Селезнева Светлана Николаевна Лекции по Дискретной математике

Подробнее

1. Организация учебного процесса 2. Неориентированные графы

1. Организация учебного процесса 2. Неориентированные графы Теория конечных графов. Организация учебного процесса 2. Неориентированные графы Лектор: к.ф.-м.н., доцент кафедры прикладной информатики и теории вероятностей РУДН Зарипова Эльвира Ринатовна ezarip@mail.ru

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция: Графы интервалов. Применения графов интервалов. Задача регулирования движения транспорта светофором. Графовая модель управления светофором на перекрестке. Лектор - доцент Селезнева Светлана Николаевна

Подробнее

Тема Основные понятия теории графов

Тема Основные понятия теории графов Тема 2.1.1. Основные понятия теории графов Преимущества использования теории графов Простой и мощный инструмент моделирования систем и решения задач упорядочения объектов Методы ТГ (комбинаторные) отличаются

Подробнее

Лекция 4: Эйлеров и гамильтонов цикл

Лекция 4: Эйлеров и гамильтонов цикл Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Эйлеров цикл Определение Цикл, содержащий все ребра графа, называется эйлеровым. Граф

Подробнее

Практическая работа 3 Графы. Способы задания графов. Степени вершин.

Практическая работа 3 Графы. Способы задания графов. Степени вершин. Практическая работа 3 Графы. Способы задания графов. Степени вершин. Цель работы: задание графа, вычисление степеней вершин. Содержание работы: Основные понятия. Граф G - совокупность двух множеств: вершин

Подробнее

Лекция 6: Деревья. Б.М.Верников, А.М.Шур

Лекция 6: Деревья. Б.М.Верников, А.М.Шур Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение и примеры Определение Деревом называется связный граф без циклов. Примеры

Подробнее

Лекция 3: Маршруты и связность

Лекция 3: Маршруты и связность Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определения маршрута, цепи, цикла Определение Маршрутом в графе называется последовательность

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по курсу Дискретные модели. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по курсу Дискретные модели. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция 1. Комбинаторные объекты: выборки, размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число. Комбинаторные числа: факториал, убывающий факториал, биномиальные

Подробнее

ДИСКРЕТНАЯ МАТЕМАТИКА ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ. G.1. Направленные графы. G.2. Ненаправленные графы. Степень вершины. Лемма о рукопожатиях

ДИСКРЕТНАЯ МАТЕМАТИКА ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ. G.1. Направленные графы. G.2. Ненаправленные графы. Степень вершины. Лемма о рукопожатиях G.. Направленные графы Различают направленные и ненаправленные графы. ДИСКРЕТНАЯ МАТЕМАТИКА G. ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ Направленным графом G называется пара G = < V, E >, где V = { v i i {,, n}} есть непустое

Подробнее

ВВЕДЕНИЕ В БИОИНФОРМАТИКУ

ВВЕДЕНИЕ В БИОИНФОРМАТИКУ ВВЕДЕНИЕ В БИОИНФОРМАТИКУ Лекция 6 Элементы теории графов Новоселецкий Валерий Николаевич к.ф.-м.н., доц. каф. биоинженерии valery.novoseletsky@yandex.ru Сайт курса http://intbio.org/bioinf2018 2 Задача

Подробнее

Метрические характеристики. Матричное представление графов

Метрические характеристики. Матричное представление графов Теория конечных графов Метрические характеристики. Матричное представление графов Лектор: к.ф.-м.н., старший преподаватель кафедры прикладной информатики и теории вероятностей РУДН Зарипова Эльвира Ринатовна

Подробнее

Практическая работа 13 «Построения остовного дерева» Теоретический материал и методические указания к выполнению заданий. 1.

Практическая работа 13 «Построения остовного дерева» Теоретический материал и методические указания к выполнению заданий. 1. Практическая работа «Построения остовного дерева» Цели занятия: - закрепить усвоение теоретического материала по данной теме через решение упражнений; - научиться строить графы; - научиться строить остовное

Подробнее

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ К ЛЕКЦИЯМ НА ТЕМУ ПРЕДИСЛОВИЕ.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ К ЛЕКЦИЯМ НА ТЕМУ ПРЕДИСЛОВИЕ. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ К ЛЕКЦИЯМ НА ТЕМУ "ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ" ПРЕДИСЛОВИЕ. В курсе лекций по высшей математике, читаемом студентам инженерных специальностей, предусматривается знакомство с основами

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В. Лекция: Недетерминированные конечные автоматы (НКА) без выхода. Теорема о совпадении классов множеств слов, допускаемых конечными детерминированными и конечными недетерминированными автоматами. Процедура

Подробнее

Лектор доцент Селезнева Светлана Николаевна Лекции на сайте факультет ВМК МГУ имени М.В.

Лектор доцент Селезнева Светлана Николаевна Лекции на сайте  факультет ВМК МГУ имени М.В. Лекция: Алгоритм распознавания полноты в P k. Замкнутые классы. Классы функций, сохраняющих множества и сохраняющих разбиения, их замкнутость. Теорема Кузнецова о функциональной полноте. Предполные классы.

Подробнее

Глава II. ТЕОРИЯ ГРАФОВ

Глава II. ТЕОРИЯ ГРАФОВ Глава II. ТЕОРИЯ ГРАФОВ Графом G называется пара множеств V и E (G =(V, E)), где V - непустое множество, а Е некоторое множество пар элементов множества V (E = {(v i, v j )}, i= 1, 2, 3,, n; j = 1, 2,

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция: Подгруппы, смежные классы, индекс подгруппы в группе. Теорема Лагранжа о порядке подгруппы конечной группы. Орбита и стабилизатор элемента, теорема о порядке стабилизатора элемента. Лемма Бернсайда.

Подробнее

Элементы теории графов

Элементы теории графов Глава 1 Элементы теории графов План. Общее определение графов, вершины, ребра, граничное отображение или отображение инцидентности, инцидентные вершины и ребра, вершины, соединенные ребром, смежные вершины,

Подробнее

Лектор Селезнева Светлана Николаевна Лекции на сайте Факультет ВМК МГУ имени М.В.

Лектор Селезнева Светлана Николаевна Лекции на сайте   Факультет ВМК МГУ имени М.В. Лекция: Конечные автоматы без выхода, детерминированные и недетерминированные. Теорема о совпадении классов множеств слов, допускаемых конечными детерминированными и недетерминированными автоматами. Процедура

Подробнее

Транспортные схемы (сети ЭВМ) Модели процессов Планирование (Сетевой график) Алгоритмизация Модели органической химии. Моделирование задача Эйлера

Транспортные схемы (сети ЭВМ) Модели процессов Планирование (Сетевой график) Алгоритмизация Модели органической химии. Моделирование задача Эйлера Содержание Введение 1. Основные понятия теории графов 2. Степень вершины 3. Маршруты, цепи, циклы 5. Ориентированные графы 6. Изоморфизм графов 7. Плоские графы 8. Операции над графами 9. Способы задания

Подробнее

Элементы теории графов

Элементы теории графов Министерство образования и науки РФ Уральский государственный экономический университет Ю. Б. Мельников Элементы теории графов Раздел электронного учебника для сопровождения лекции Изд. 4-е, испр. и доп.

Подробнее

Определение. Из определения не следует, что все вершина из доли X должна быть смежна с вершиной из доли Y.

Определение. Из определения не следует, что все вершина из доли X должна быть смежна с вершиной из доли Y. Определение Определение Граф G = (V, E) называется двудольным, если множество его вершин можно разбить на два непересекающихся непустых подмножества (доли) X и Y так, что любые две вершины из одной доли

Подробнее

Лекция 7. Действие группы на множестве. Орбита и стабилизатор элемента, теорема о порядке стабилизатора элемента. Лемма Бернсайда.

Лекция 7. Действие группы на множестве. Орбита и стабилизатор элемента, теорема о порядке стабилизатора элемента. Лемма Бернсайда. Лекция 7. Действие группы на множестве. Орбита и стабилизатор элемента, теорема о порядке стабилизатора элемента. Лемма Бернсайда. Лектор Селезнева Светлана Николаевна selezn@cs.msu.su факультет ВМК МГУ

Подробнее

Тема 6. Эйлеровы графы

Тема 6. Эйлеровы графы Тема 6. Эйлеровы графы 6.1. Эйлеровы графы, необходимые и достаточные условия эйлеровости Определение. Если граф имеет цикл (не обязательно простой), содержащий все ребра графа по одному разу, то такой

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике -2, 1-й курс, группа 141, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике -2, 1-й курс, группа 141, факультет ВМК МГУ имени М.В. Лекция: Схемы из функциональных элементов с задержками (СФЭЗ), автоматность осуществляемых ими отображений. Представление КАВ СФЭЗ. Упрощения КАВ. Отличимость и неотличимость состояний КАВ. Теорема Мура

Подробнее

Лекция 8: Алгоритмы для задач о паросочетаниях

Лекция 8: Алгоритмы для задач о паросочетаниях Лекция 8: Алгоритмы для задач о паросочетаниях Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Задача о назначениях В этой лекции мы

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция 2. Комбинаторика. Свойства биномиальных коэффициентов. Подсчет сумм и метод производящих функций. Полиномиальные коэффициенты. Оценки биномиальных и полиномиальных коэффициентов. Асимптотические

Подробнее

Теория графов. Краткий курс. Глава 1. Основные понятия. Dc/u press, All rights ignored.

Теория графов. Краткий курс. Глава 1. Основные понятия. Dc/u press, All rights ignored. Теория графов. Краткий курс. Глава. Основные понятия. Dc/u prss, 00. All rights ignord. Доброго времени суток, неизвестный друг! Перед вами краткий курс теории графов. Порождение всемогущего и многоликого

Подробнее

Тема 10. Раскрашивание графов

Тема 10. Раскрашивание графов Тема 10. Раскрашивание графов 10.1. Хроматическое число Определение. Граф G называется k-раскрашиваемым, если каждой его вершине можно приписать один из k цветов таким образом, чтобы никакие две смежные

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция 2. Свойства биномиальных коэффициентов. Подсчет сумм и метод производящих функций (конечный случай). Полиномиальные коэффициенты. Оценки биномиальных и полиномиальных коэффициентов. Оценки сумм

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Элементы теории графов Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр. и доп.

Подробнее

Практическая работа 1. Тема: Графическое изображение графов.

Практическая работа 1. Тема: Графическое изображение графов. Практическая работа Тема: Графическое изображение графов. Цель: изучить основы теоретико-множественного и графического представлений графов, простейших свойств графов, получить практический навык задания

Подробнее

Лекция 12: Верхние оценки хроматического числа

Лекция 12: Верхние оценки хроматического числа Лекция 12: Верхние оценки хроматического числа Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Алгоритм последовательной раскраски В

Подробнее

Тема 2.3. Деревья. Характеристики графов. Тема Деревья и их свойства.

Тема 2.3. Деревья. Характеристики графов. Тема Деревья и их свойства. Тема 2.3. Деревья. Характеристики графов Тема 2.3.1. Деревья и их свойства. Выполните задания НА ЗНАНИЕ ТЕОРЕТИЧЕСКОГО МАТЕРИАЛА А) граф с семью вершинами и шестью ребрами, не имеющий циклов, Б) связный

Подробнее

Основы теории графов. Оглавление

Основы теории графов. Оглавление Основы теории графов Оглавление Введение в теорию графов... Основные понятия... Матрица смежности... 8 Матрица инциденции... 0 Операции над графами... Операции над графами... Эйлеров путь... 7 Основы теории

Подробнее

Занятие 3. deg u = 2 E.

Занятие 3. deg u = 2 E. Занятие 3 Граф 1 G = (V, E) представляет собой конечную непустую совокупность вершин V, некоторые из которых соединенны ребрами. Совокупность ребер обозначается E. Мы пишем uv E, если вершины u и v соединены

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-Net.Ru Общероссийский математический портал А. В. Гавриков, Т-неприводимые расширения объединений некоторых типов орграфов, ПДМ, 2013, номер 4(22), 47 55 Использование Общероссийского математического

Подробнее

Оптимизация на графах

Оптимизация на графах М Е Т О Д Ы И А Л Г О Р И Т М Ы Т Е О Р И И Г Р А Ф О В Оптимизация на графах Понятие экстремального числа графа Цикломатическое число графа Число внутренней устойчивости графа Алгоритмы поиска наибольших

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция: Функция Мёбиуса на ЧУМ. Функция Мёбиуса на n-мерном кубе. Формула обращения Мёбиуса. Принцип включений-исключений. Задача о подсчете числа перестановок- беспорядков. Лектор - доцент Селезнева Светлана

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция: Частично упорядоченные множества (ЧУМ). Диаграмма ЧУМ. Максимальные, минимальные, наибольший и наименьший элементы. Цепи и антицепи, длина и ширина конечных ЧУМ. Теорема о разбиении ЧУМ на антицепи.

Подробнее

Лекция 11: Раскраска графа

Лекция 11: Раскраска графа Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Происхождение понятия раскраски графа В приложениях теории графов нередко возникают задачи,

Подробнее

ДЕРЕВЬЯ. Тема 8. Jaan Penjam, Дискретная математика II: Деревья 1 / 19

ДЕРЕВЬЯ. Тема 8. Jaan Penjam,   Дискретная математика II: Деревья 1 / 19 ДЕРЕВЬЯ Тема 8 Jaan Penjam, email: jaan@cs.ioc.ee Дискретная математика II: Деревья 1 / 19 План лекции 1 Определение дерева и основные свойства 2 Остовные деревья графа Jaan Penjam, email: jaan@cs.ioc.ee

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В. Лекция 2. Свойства биномиальных коэффициентов. Метод производящих функций, подсчет сумм и доказательство тождеств. Полиномиальные коэффициенты. Принцип включений-исключений. Лектор - доцент Селезнева Светлана

Подробнее

,

, Занятие 5 Ориентированный граф (или, орграф) G = (V, A) состоит из некоторого непустого множества V вершин и множества A соединяющих эти вершины ориентированных ребер (или, дуг или, стрелок). Мы пишем

Подробнее

ЛЕКЦИЯ 1 ОБХОДЫ ГРАФОВ

ЛЕКЦИЯ 1 ОБХОДЫ ГРАФОВ ЛЕКЦИЯ 1 ОБХОДЫ ГРАФОВ Существуют два классических понятия, связанных с обходами графов: эйлеров цикл и гамильтонов цикл. Определение 1: Эйлеров цикл (в графе) цикл, который содержит все ребра этого графа.

Подробнее

Основы теории графов. V-множество вершин, E- множество ребер Граф - G(V, Е). Л. Эйлер 1736 г.

Основы теории графов. V-множество вершин, E- множество ребер Граф - G(V, Е). Л. Эйлер 1736 г. V-множество вершин, E- множество ребер Граф - G(V, Е). Л. Эйлер 1736 г. G(V, Е, f) V,E множества, отображение инциденции f: Е V&V множества Е в V&V V={A,В,С,D,F,Н,P} множество точек, E={a,b,с,d,e,f,g,h,p,l}

Подробнее

Графы, линейные пространства и комбинаторика

Графы, линейные пространства и комбинаторика Дмитрий Саютин 12 августа 2019 Содержание 1. 1 1.1 Векторные пространства.................................. 1 1.2 Пространство циклов.................................... 1 1.3 Пространство разрезов...................................

Подробнее

ПРИКЛАДНАЯ ТЕОРИЯ ГРАФОВ

ПРИКЛАДНАЯ ТЕОРИЯ ГРАФОВ ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА 2012 Прикладная теория графов 1(15) ПРИКЛАДНАЯ ТЕОРИЯ ГРАФОВ УДК 519.17 ХАРАКТЕРИЗАЦИЯ ГРАФОВ С ЗАДАННЫМ ЧИСЛОМ ДОПОЛНИТЕЛЬНЫХ РЕБЕР МИНИМАЛЬНОГО ВЕРШИННОГО 1-РАСШИРЕНИЯ

Подробнее

О СУЩЕСТВОВАНИИ ОСТОВНЫХ ЦЕПЕЙ В ГРАФАХ С КОРОТКИМИ ЦИКЛАМИ*) В. Ню

О СУЩЕСТВОВАНИИ ОСТОВНЫХ ЦЕПЕЙ В ГРАФАХ С КОРОТКИМИ ЦИКЛАМИ*) В. Ню УДК 519.17 ДИСКРЕТНЫЙ АНАЛИЗ И ИССЛЕДОВАНИЕ ОПЕРАЦИЙ Октябрь декабрь 1996. Том 3, 4, 64-68 О СУЩЕСТВОВАНИИ ОСТОВНЫХ ЦЕПЕЙ В ГРАФАХ С КОРОТКИМИ ЦИКЛАМИ*) В. Ню Показано, что если в 2-связном неориентированном

Подробнее

Элементы теории графов. Теория Графов. Alexander Lazarev. Institute of Control Sciences of Russian Academy of Sciences учебный год

Элементы теории графов. Теория Графов. Alexander Lazarev. Institute of Control Sciences of Russian Academy of Sciences учебный год Теория Графов Alexander Lazarev Institute of Control Sciences of Russian Academy of Sciences 2009-2010 учебный год Outline 1 Элементы теории графов Степени вершин О машинном представлении графов Поиск

Подробнее

Лекция 1. Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число. Примеры.

Лекция 1. Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число. Примеры. Лекция 1. Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число. Примеры. Лектор - доцент Селезнева Светлана Николаевна Лекции по курсу Дискретная

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В. Лекция: Конечные автоматы (КА) без выхода (конечные автоматы-распознаватели). Диаграммы переходов. Автоматные множества (языки). Лемма о свойствах автоматных множеств. Пример неавтоматного множества. Лектор

Подробнее

Алгоритмы и структуры данных

Алгоритмы и структуры данных Алгоритмы и структуры данных Косяков Михаил Сергеевич к.т.н., доцент кафедры ВТ Тараканов Денис Сергеевич ассистент кафедры ВТ Бабаянц Александр Амаякович https://vk.com/algoclass_2018 Содержание курса

Подробнее

Элементы теории графов. Деревья, плоские графы, раскраски графов

Элементы теории графов. Деревья, плоские графы, раскраски графов Элементы теории графов Деревья, плоские графы, раскраски графов Дерево Деревом называется неориентированный связный граф, не содержащий циклов. В дереве существует один и только соединяющий каждую пару

Подробнее

Лектор Селезнева Светлана Николаевна Лекции на сайте Факультет ВМК МГУ имени М.В.

Лектор Селезнева Светлана Николаевна Лекции на сайте  Факультет ВМК МГУ имени М.В. Лекция 4. Особенности многозначных логик. Замкнутый класс, базис замкнутого класса. Теоремы Янова и Мучника о существовании в многозначных логиках замкнутых классов без базиса и замкнутых классов со счетным

Подробнее

Лекция 1. Комбинаторика. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями. Их число.

Лекция 1. Комбинаторика. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями. Их число. Лекция 1. Комбинаторика. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями. Их число. Лектор - доцент Селезнева Светлана Николаевна Кафедра математической кибернернетики

Подробнее

Лабораторный практикум по теории графов

Лабораторный практикум по теории графов Зарипова ЭР РУДН, Физ-мат Лабораторный практикум по теории графов Тема: Основные понятия теории графов Неориентированные графы Дан граф G( VE, ) (рис ): Лабораторная работа V e V e e e V e V e e Рисунок

Подробнее

Лекция: Группы. Изоморфизм групп. Симметрическая группа перестановок. Подгруппы. Теорема Кэли.

Лекция: Группы. Изоморфизм групп. Симметрическая группа перестановок. Подгруппы. Теорема Кэли. Лекция: Группы. Изоморфизм групп. Симметрическая группа перестановок. Подгруппы. Теорема Кэли. Лектор - доцент Селезнева Светлана Николаевна Лекции по Избранным вопросам дискретной математики. 3-й курс,

Подробнее

Лекция 7: графы. Дискретная математика, ВШЭ, факультет компьютерных наук. (Осень 2014 весна 2015)

Лекция 7: графы. Дискретная математика, ВШЭ, факультет компьютерных наук. (Осень 2014 весна 2015) Лекция 7: графы Дискретная математика, ВШЭ, факультет компьютерных наук (Осень 2014 весна 2015) 1 Какие бывают графы Неформально граф это набор точек и линий, соединяющих эти точки. Формальных определений

Подробнее

Лекция 3. Отношения на множествах. Свойства. Формула включений-исключений. Отношение эквивалентности. Отношение частичного порядка.

Лекция 3. Отношения на множествах. Свойства. Формула включений-исключений. Отношение эквивалентности. Отношение частичного порядка. Лекция 3. Отношения на множествах. Свойства. Формула включений-исключений. Отношение эквивалентности. Отношение частичного порядка. Лектор - доцент Селезнева Светлана Николаевна Лекции по Дискретным моделям.

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция 10. Подгруппы, смежные классы, индекс подгруппы в группе. Теорема Лагранжа о порядке конечной группы. Нормальные подгруппы, фактор-группа. Орбита и стабилизатор элемента, теорема о порядке стабилизатора

Подробнее

Глава 6. ПАРОСОЧЕТАНИЯ И ЗАДАЧА О НАЗНАЧЕНИЯХ

Глава 6. ПАРОСОЧЕТАНИЯ И ЗАДАЧА О НАЗНАЧЕНИЯХ Глава 6. ПАРОСОЧЕТАНИЯ И ЗАДАЧА О НАЗНАЧЕНИЯХ В данной главе рассмотрим алгоритмы решения задачи о максимальном паросочетании, а также задачи о назначениях []. Обе эти задачи имеют широкое применение и

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-Net.Ru Общероссийский математический портал В. Г. Визинг, Дистрибутивная раскраска вершин графа, Дискретн. анализ и исслед. опер., 1995, том 2, номер 4, 3 12 Использование Общероссийского математического

Подробнее

Лекция 13: Раскраска плоских графов. Задачи о раскраске

Лекция 13: Раскраска плоских графов. Задачи о раскраске Лекция 13: Раскраска плоских графов. Задачи, сводимые к задаче о раскраске Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные

Подробнее

ТЕОРИЯ ГРАФОВ. Тема 7. Jaan Penjam, Дискретная математика II: Теория графов 1 / 47

ТЕОРИЯ ГРАФОВ. Тема 7. Jaan Penjam,   Дискретная математика II: Теория графов 1 / 47 ТЕОРИЯ ГРАФОВ Тема 7 Jaan Penjam, email: jaan@s.io.ee Дискретная математика II: Теория графов 1 / 47 План лекции 1 Определение и свойства графа 2 Пути, циклы и связность 3 Эйлеровы графы 4 Гамильтоновы

Подробнее

Лекция 2. Схемы из функциональных элементов (СФЭ) в некотором базисе. Сложность и глубина схемы. Примеры. Метод синтеза СФЭ по ДНФ.

Лекция 2. Схемы из функциональных элементов (СФЭ) в некотором базисе. Сложность и глубина схемы. Примеры. Метод синтеза СФЭ по ДНФ. Лекция 2. Схемы из функциональных элементов (СФЭ) в некотором базисе. Сложность и глубина схемы. Примеры. Метод синтеза СФЭ по ДНФ. Лектор - доцент Селезнева Светлана Николаевна Лекции по Дискретной математике

Подробнее

эти занятия проходят в разное время и 7 студентов посещают занятия по французскому и английскому языкам? Ответ: =33 студента.

эти занятия проходят в разное время и 7 студентов посещают занятия по французскому и английскому языкам? Ответ: =33 студента. III ОСНОВЫ КОМБИНАТОРИКИ Общие правила комбинаторики Комбинаторика это раздел дискретной математики, который изучает способы подсчета числа элементов различных конечных множеств Многие правила комбинаторики

Подробнее

Открытый маршрут называют цепью, если все ребра в нем различны (вершины могут повторяться).

Открытый маршрут называют цепью, если все ребра в нем различны (вершины могут повторяться). Маршруты, пути и циклы в графах 1. Маршруты, пути и циклы Маршрутом в графе G=(V, E) называется конечная последовательность смежных ребер вида: (v0,v1), (v1,v2), (v2,v3),,(vk-1,vk), или маршрутом можно

Подробнее

Лекция 1: Знакомство с графами

Лекция 1: Знакомство с графами Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Понятие графа Определение Графом называется геометрическая фигура, состоящая из точек

Подробнее

http://vmk.ucoz.net/ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. И. ЛОБАЧЕВСКОГО Факультет вычислительной математики и кибернетики Кафедра математической логики и высшей алгебры ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ

Подробнее